Lemma 99.7.6. In Situation 99.7.1 let \{ X_ i \to X\} _{i \in I} be an fpqc covering and for each i, j \in I let \{ X_{ijk} \to X_ i \times _ X X_ j\} be an fpqc covering. Denote \mathcal{F}_ i, resp. \mathcal{F}_{ijk} the pullback of \mathcal{F} to X_ i, resp. X_{ijk}. For every scheme T over B the diagram
\xymatrix{ Q_{\mathcal{F}/X/B}(T) \ar[r] & \prod \nolimits _ i Q_{\mathcal{F}_ i/X_ i/B}(T) \ar@<1ex>[r]^-{\text{pr}_0^*} \ar@<-1ex>[r]_-{\text{pr}_1^*} & \prod \nolimits _{i, j, k} Q_{\mathcal{F}_{ijk}/X_{ijk}/B}(T) }
presents the first arrow as the equalizer of the other two. The same is true for the functor \text{Q}^{fp}_{\mathcal{F}/X/B}.
Proof.
Let \mathcal{F}_{i, T} \to \mathcal{Q}_ i be an element in the equalizer of \text{pr}_0^* and \text{pr}_1^*. By Remark 99.7.3 we obtain a surjection \mathcal{F}_ T \to \mathcal{Q} of quasi-coherent \mathcal{O}_{X_ T}-modules whose restriction to X_{i, T} recovers \mathcal{F}_ i \to \mathcal{Q}_ i. By Morphisms of Spaces, Lemma 67.31.5 we see that \mathcal{Q} is flat over T as desired. In the case of the functor \text{Q}^{fp}_{\mathcal{F}/X/B}, i.e., if \mathcal{Q}_ i is of finite presentation, then \mathcal{Q} is of finite presentation too by Descent on Spaces, Lemma 74.6.2.
\square
Comments (0)