Lemma 69.14.2. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$. Let $\mathcal{I} \subset \mathcal{O}_ X$ be a quasi-coherent sheaf of ideals. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. Consider the sheaf of $\mathcal{O}_ X$-modules $\mathcal{F}'$ which associates to every object $U$ of $X_{\acute{e}tale}$ the module

Assume $\mathcal{I}$ is of finite type. Then

$\mathcal{F}'$ is a quasi-coherent sheaf of $\mathcal{O}_ X$-modules,

for affine $U$ in $X_{\acute{e}tale}$ we have $\mathcal{F}'(U) = \{ s \in \mathcal{F}(U) \mid \mathcal{I}(U)s = 0\} $, and

$\mathcal{F}'_ x = \{ s \in \mathcal{F}_ x \mid \mathcal{I}_ x s = 0\} $.

## Comments (0)