Lemma 70.14.2. Let S be a scheme. Let X be an algebraic space over S. Let \mathcal{I} \subset \mathcal{O}_ X be a quasi-coherent sheaf of ideals. Let \mathcal{F} be a quasi-coherent \mathcal{O}_ X-module. Consider the sheaf of \mathcal{O}_ X-modules \mathcal{F}' which associates to every object U of X_{\acute{e}tale} the module
Assume \mathcal{I} is of finite type. Then
\mathcal{F}' is a quasi-coherent sheaf of \mathcal{O}_ X-modules,
for affine U in X_{\acute{e}tale} we have \mathcal{F}'(U) = \{ s \in \mathcal{F}(U) \mid \mathcal{I}(U)s = 0\} , and
\mathcal{F}'_ x = \{ s \in \mathcal{F}_ x \mid \mathcal{I}_ x s = 0\} .
Comments (0)