Lemma 70.14.2. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$. Let $\mathcal{I} \subset \mathcal{O}_ X$ be a quasi-coherent sheaf of ideals. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. Consider the sheaf of $\mathcal{O}_ X$-modules $\mathcal{F}'$ which associates to every object $U$ of $X_{\acute{e}tale}$ the module

$\mathcal{F}'(U) = \{ s \in \mathcal{F}(U) \mid \mathcal{I}s = 0\}$

Assume $\mathcal{I}$ is of finite type. Then

1. $\mathcal{F}'$ is a quasi-coherent sheaf of $\mathcal{O}_ X$-modules,

2. for affine $U$ in $X_{\acute{e}tale}$ we have $\mathcal{F}'(U) = \{ s \in \mathcal{F}(U) \mid \mathcal{I}(U)s = 0\}$, and

3. $\mathcal{F}'_ x = \{ s \in \mathcal{F}_ x \mid \mathcal{I}_ x s = 0\}$.

Proof. It is clear that the rule defining $\mathcal{F}'$ gives a subsheaf of $\mathcal{F}$. Hence we may work étale locally on $X$ to verify the other statements. Thus the lemma reduces to the case of schemes which is Properties, Lemma 28.24.2. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).