Lemma 70.9.3. Let $S$ be a scheme. Let $X$ be a quasi-compact and quasi-separated algebraic space over $S$. Let $\mathcal{F}$ be a finite type quasi-coherent $\mathcal{O}_ X$-module. Then we can write $\mathcal{F} = \mathop{\mathrm{lim}}\nolimits \mathcal{F}_ i$ where each $\mathcal{F}_ i$ is an $\mathcal{O}_ X$-module of finite presentation and all transition maps $\mathcal{F}_ i \to \mathcal{F}_{i'}$ surjective.
Proof. Write $\mathcal{F} = \mathop{\mathrm{colim}}\nolimits \mathcal{G}_ i$ as a filtered colimit of finitely presented $\mathcal{O}_ X$-modules (Lemma 70.9.1). We claim that $\mathcal{G}_ i \to \mathcal{F}$ is surjective for some $i$. Namely, choose an étale surjection $U \to X$ where $U$ is an affine scheme. Choose finitely many sections $s_ k \in \mathcal{F}(U)$ generating $\mathcal{F}|_ U$. Since $U$ is affine we see that $s_ k$ is in the image of $\mathcal{G}_ i \to \mathcal{F}$ for $i$ large enough. Hence $\mathcal{G}_ i \to \mathcal{F}$ is surjective for $i$ large enough. Choose such an $i$ and let $\mathcal{K} \subset \mathcal{G}_ i$ be the kernel of the map $\mathcal{G}_ i \to \mathcal{F}$. Write $\mathcal{K} = \mathop{\mathrm{colim}}\nolimits \mathcal{K}_ a$ as the filtered colimit of its finite type quasi-coherent submodules (Lemma 70.9.2). Then $\mathcal{F} = \mathop{\mathrm{colim}}\nolimits \mathcal{G}_ i/\mathcal{K}_ a$ is a solution to the problem posed by the lemma. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)