Lemma 10.73.1. Given a flat ring map $R \to R'$, an $R$-module $M$, and an $R'$-module $N'$ the natural map

is an isomorphism for $i \geq 0$.

Lemma 10.73.1. Given a flat ring map $R \to R'$, an $R$-module $M$, and an $R'$-module $N'$ the natural map

\[ \mathop{\mathrm{Ext}}\nolimits ^ i_{R'}(M \otimes _ R R', N') \to \text{Ext}^ i_ R(M, N') \]

is an isomorphism for $i \geq 0$.

**Proof.**
Choose a free resolution $F_\bullet $ of $M$. Since $R \to R'$ is flat we see that $F_\bullet \otimes _ R R'$ is a free resolution of $M \otimes _ R R'$ over $R'$. The statement is that the map

\[ \mathop{\mathrm{Hom}}\nolimits _{R'}(F_\bullet \otimes _ R R', N') \to \mathop{\mathrm{Hom}}\nolimits _ R(F_\bullet , N') \]

induces an isomorphism on homology groups, which is true because it is an isomorphism of complexes by Lemma 10.14.3. $\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: