Lemma 10.73.1. Given a flat ring map R \to R', an R-module M, and an R'-module N' the natural map
is an isomorphism for i \geq 0.
In this section we briefly discuss the functoriality of \mathop{\mathrm{Ext}}\nolimits with respect to change of ring, etc. Here is a list of items to work out.
Given R \to R', an R-module M and an R'-module N' the R-module \mathop{\mathrm{Ext}}\nolimits ^ i_ R(M, N') has a natural R'-module structure. Moreover, there is a canonical R'-linear map \mathop{\mathrm{Ext}}\nolimits ^ i_{R'}(M \otimes _ R R', N') \to \mathop{\mathrm{Ext}}\nolimits ^ i_ R(M, N').
Given R \to R' and R-modules M, N there is a natural R-module map \mathop{\mathrm{Ext}}\nolimits ^ i_ R(M, N) \to \text{Ext}^ i_ R(M, N \otimes _ R R').
Lemma 10.73.1. Given a flat ring map R \to R', an R-module M, and an R'-module N' the natural map
is an isomorphism for i \geq 0.
Proof. Choose a free resolution F_\bullet of M. Since R \to R' is flat we see that F_\bullet \otimes _ R R' is a free resolution of M \otimes _ R R' over R'. The statement is that the map
induces an isomorphism on homology groups, which is true because it is an isomorphism of complexes by Lemma 10.14.3. \square
Comments (1)
Comment #683 by Keenan Kidwell on