The Stacks project

Lemma 29.43.16. Let $S$ be a scheme which admits an ample invertible sheaf. Then

  1. any projective morphism $X \to S$ is H-projective, and

  2. any quasi-projective morphism $X \to S$ is H-quasi-projective.

Proof. The assumptions on $S$ imply that $S$ is quasi-compact and separated, see Properties, Definition 28.26.1 and Lemma 28.26.11 and Constructions, Lemma 27.8.8. Hence Lemma 29.43.12 applies and we see that (1) implies (2). Let $\mathcal{E}$ be a finite type quasi-coherent $\mathcal{O}_ S$-module. By our definition of projective morphisms it suffices to show that $\mathbf{P}(\mathcal{E}) \to S$ is H-projective. If $\mathcal{E}$ is generated by finitely many global sections, then the corresponding surjection $\mathcal{O}_ S^{\oplus n} \to \mathcal{E}$ induces a closed immersion

\[ \mathbf{P}(\mathcal{E}) \longrightarrow \mathbf{P}(\mathcal{O}_ S^{\oplus n}) = \mathbf{P}^{n - 1}_ S \]

as desired. In general, let $\mathcal{L}$ be an ample invertible sheaf on $S$. By Properties, Proposition 28.26.13 there exists an integer $n$ such that $\mathcal{E} \otimes _{\mathcal{O}_ S} \mathcal{L}^{\otimes n}$ is globally generated by finitely many sections. Since $\mathbf{P}(\mathcal{E}) = \mathbf{P}(\mathcal{E} \otimes _{\mathcal{O}_ S} \mathcal{L}^{\otimes n})$ by Constructions, Lemma 27.20.1 this finishes the proof. $\square$

Comments (3)

Comment #8582 by AAK on

Correction: "In general, let be an ample invertible sheaf on ."

Comment #8583 by AAK on

Also, .

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 087S. Beware of the difference between the letter 'O' and the digit '0'.