The Stacks project

Lemma 30.23.5. Let $X$ be a Noetherian scheme and let $\mathcal{I} \subset \mathcal{O}_ X$ be a quasi-coherent sheaf of ideals. Let $\mathcal{F}$, $\mathcal{G}$ be coherent $\mathcal{O}_ X$-modules. Set $\mathcal{H} = \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{G}, \mathcal{F})$. Then

\[ \mathop{\mathrm{lim}}\nolimits H^0(X, \mathcal{H}/\mathcal{I}^ n\mathcal{H}) = \mathop{\mathrm{Mor}}\nolimits _{\textit{Coh}(X, \mathcal{I})} (\mathcal{G}^\wedge , \mathcal{F}^\wedge ). \]

Proof. To prove this we may work affine locally on $X$. Hence we may assume $X = \mathop{\mathrm{Spec}}(A)$ and $\mathcal{F}$, $\mathcal{G}$ given by finite $A$-module $M$ and $N$. Then $\mathcal{H}$ corresponds to the finite $A$-module $H = \mathop{\mathrm{Hom}}\nolimits _ A(M, N)$. The statement of the lemma becomes the statement

\[ H^\wedge = \mathop{\mathrm{Hom}}\nolimits _{A^\wedge }(M^\wedge , N^\wedge ) \]

via the equivalence of Lemma 30.23.1. By Algebra, Lemma 10.97.2 (used 3 times) we have

\[ H^\wedge = \mathop{\mathrm{Hom}}\nolimits _ A(M, N) \otimes _ A A^\wedge = \mathop{\mathrm{Hom}}\nolimits _{A^\wedge }(M \otimes _ A A^\wedge , N \otimes _ A A^\wedge ) = \mathop{\mathrm{Hom}}\nolimits _{A^\wedge }(M^\wedge , N^\wedge ) \]

where the second equality uses that $A^\wedge $ is flat over $A$ (see More on Algebra, Lemma 15.65.4). The lemma follows. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0882. Beware of the difference between the letter 'O' and the digit '0'.