Lemma 20.42.7. Let $(X, \mathcal{O}_ X)$ be a ringed space. Given a solid diagram of complexes of $\mathcal{O}_ X$-modules

\[ \xymatrix{ \mathcal{E}^\bullet \ar@{..>}[dr] \ar[r]_\alpha & \mathcal{F}^\bullet \\ & \mathcal{G}^\bullet \ar[u]_ f } \]

with $\mathcal{E}^\bullet $ strictly perfect, $\mathcal{E}^ j = 0$ for $j < a$ and $H^ j(f)$ an isomorphism for $j > a$ and surjective for $j = a$, then a dotted arrow making the diagram commute up to homotopy exists locally on $X$.

**Proof.**
Our assumptions on $f$ imply the cone $C(f)^\bullet $ has vanishing cohomology sheaves in degrees $\geq a$. Hence Lemma 20.42.6 guarantees there is an open covering $X = \bigcup U_ i$ such that the composition $\mathcal{E}^\bullet \to \mathcal{F}^\bullet \to C(f)^\bullet $ is homotopic to zero over $U_ i$. Since

\[ \mathcal{G}^\bullet \to \mathcal{F}^\bullet \to C(f)^\bullet \to \mathcal{G}^\bullet [1] \]

restricts to a distinguished triangle in $K(\mathcal{O}_{U_ i})$ we see that we can lift $\alpha |_{U_ i}$ up to homotopy to a map $\alpha _ i : \mathcal{E}^\bullet |_{U_ i} \to \mathcal{G}^\bullet |_{U_ i}$ as desired.
$\square$

## Comments (0)