Lemma 20.42.8. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{E}^\bullet$, $\mathcal{F}^\bullet$ be complexes of $\mathcal{O}_ X$-modules with $\mathcal{E}^\bullet$ strictly perfect.

1. For any element $\alpha \in \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(\mathcal{E}^\bullet , \mathcal{F}^\bullet )$ there exists an open covering $X = \bigcup U_ i$ such that $\alpha |_{U_ i}$ is given by a morphism of complexes $\alpha _ i : \mathcal{E}^\bullet |_{U_ i} \to \mathcal{F}^\bullet |_{U_ i}$.

2. Given a morphism of complexes $\alpha : \mathcal{E}^\bullet \to \mathcal{F}^\bullet$ whose image in the group $\mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(\mathcal{E}^\bullet , \mathcal{F}^\bullet )$ is zero, there exists an open covering $X = \bigcup U_ i$ such that $\alpha |_{U_ i}$ is homotopic to zero.

Proof. Proof of (1). By the construction of the derived category we can find a quasi-isomorphism $f : \mathcal{F}^\bullet \to \mathcal{G}^\bullet$ and a map of complexes $\beta : \mathcal{E}^\bullet \to \mathcal{G}^\bullet$ such that $\alpha = f^{-1}\beta$. Thus the result follows from Lemma 20.42.7. We omit the proof of (2). $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).