Lemma 20.46.9. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{E}^\bullet$, $\mathcal{F}^\bullet$ be complexes of $\mathcal{O}_ X$-modules with $\mathcal{E}^\bullet$ strictly perfect. Then the internal hom $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{E}^\bullet , \mathcal{F}^\bullet )$ is represented by the complex $\mathcal{H}^\bullet$ with terms

$\mathcal{H}^ n = \bigoplus \nolimits _{n = p + q} \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{E}^{-q}, \mathcal{F}^ p)$

and differential as described in Section 20.41.

Proof. Choose a quasi-isomorphism $\mathcal{F}^\bullet \to \mathcal{I}^\bullet$ into a K-injective complex. Let $(\mathcal{H}')^\bullet$ be the complex with terms

$(\mathcal{H}')^ n = \prod \nolimits _{n = p + q} \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{E}^{-q}, \mathcal{I}^ p)$

which represents $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{E}^\bullet , \mathcal{F}^\bullet )$ by the construction in Section 20.42. It suffices to show that the map

$\mathcal{H}^\bullet \longrightarrow (\mathcal{H}')^\bullet$

is a quasi-isomorphism. Given an open $U \subset X$ we have by inspection

$H^0(\mathcal{H}^\bullet (U)) = \mathop{\mathrm{Hom}}\nolimits _{K(\mathcal{O}_ U)}(\mathcal{E}^\bullet |_ U, \mathcal{I}^\bullet |_ U) \to H^0((\mathcal{H}')^\bullet (U)) = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ U)}(\mathcal{E}^\bullet |_ U, \mathcal{I}^\bullet |_ U)$

By Lemma 20.46.8 the sheafification of $U \mapsto H^0(\mathcal{H}^\bullet (U))$ is equal to the sheafification of $U \mapsto H^0((\mathcal{H}')^\bullet (U))$. A similar argument can be given for the other cohomology sheaves. Thus $\mathcal{H}^\bullet$ is quasi-isomorphic to $(\mathcal{H}')^\bullet$ which proves the lemma. $\square$

Comment #8625 by nkym on

$\mathcal{K}$ in the proof is undefined.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).