Processing math: 100%

The Stacks project

20.42 Internal hom in the derived category

Let (X, \mathcal{O}_ X) be a ringed space. Let L, M be objects of D(\mathcal{O}_ X). We would like to construct an object R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M) of D(\mathcal{O}_ X) such that for every third object K of D(\mathcal{O}_ X) there exists a canonical bijection

20.42.0.1
\begin{equation} \label{cohomology-equation-internal-hom} \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(K, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M)) = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(K \otimes _{\mathcal{O}_ X}^\mathbf {L} L, M) \end{equation}

Observe that this formula defines R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M) up to unique isomorphism by the Yoneda lemma (Categories, Lemma 4.3.5).

To construct such an object, choose a K-injective complex \mathcal{I}^\bullet representing M and any complex of \mathcal{O}_ X-modules \mathcal{L}^\bullet representing L. Then we set

R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M) = \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{L}^\bullet , \mathcal{I}^\bullet )

where the right hand side is the complex of \mathcal{O}_ X-modules constructed in Section 20.41. This is well defined by Lemma 20.41.7. We get a functor

D(\mathcal{O}_ X)^{opp} \times D(\mathcal{O}_ X) \longrightarrow D(\mathcal{O}_ X), \quad (K, L) \longmapsto R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L)

As a prelude to proving (20.42.0.1) we compute the cohomology groups of R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L).

Lemma 20.42.1. Let (X, \mathcal{O}_ X) be a ringed space. Let L, M be objects of D(\mathcal{O}_ X). For every open U we have

H^0(U, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M)) = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ U)}(L|_ U, M|_ U)

and in particular H^0(X, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M)) = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(L, M).

Proof. Choose a K-injective complex \mathcal{I}^\bullet of \mathcal{O}_ X-modules representing M and a K-flat complex \mathcal{L}^\bullet representing L. Then \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{L}^\bullet , \mathcal{I}^\bullet ) is K-injective by Lemma 20.41.8. Hence we can compute cohomology over U by simply taking sections over U and the result follows from Lemma 20.41.6. \square

Lemma 20.42.2. Let (X, \mathcal{O}_ X) be a ringed space. Let K, L, M be objects of D(\mathcal{O}_ X). With the construction as described above there is a canonical isomorphism

R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M)) = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K \otimes _{\mathcal{O}_ X}^\mathbf {L} L, M)

in D(\mathcal{O}_ X) functorial in K, L, M which recovers (20.42.0.1) by taking H^0(X, -).

Proof. Choose a K-injective complex \mathcal{I}^\bullet representing M and a K-flat complex of \mathcal{O}_ X-modules \mathcal{L}^\bullet representing L. Let \mathcal{K}^\bullet be any complex of \mathcal{O}_ X-modules representing K. Then we have

\mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{L}^\bullet , \mathcal{I}^\bullet )) = \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet ( \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{L}^\bullet ), \mathcal{I}^\bullet )

by Lemma 20.41.1. Note that the left hand side represents R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M)) (use Lemma 20.41.8) and that the right hand side represents R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K \otimes _{\mathcal{O}_ X}^\mathbf {L} L, M). This proves the displayed formula of the lemma. Taking global sections and using Lemma 20.42.1 we obtain (20.42.0.1). \square

Lemma 20.42.3. Let (X, \mathcal{O}_ X) be a ringed space. Let K, L be objects of D(\mathcal{O}_ X). The construction of R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L) commutes with restrictions to opens, i.e., for every open U we have R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K|_ U, L|_ U) = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L)|_ U.

Proof. This is clear from the construction and Lemma 20.32.1. \square

Lemma 20.42.4. Let (X, \mathcal{O}_ X) be a ringed space. The bifunctor R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (- , -) transforms distinguished triangles into distinguished triangles in both variables.

Proof. This follows from the observation that the assignment

(\mathcal{L}^\bullet , \mathcal{M}^\bullet ) \longmapsto \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{L}^\bullet , \mathcal{M}^\bullet )

transforms a termwise split short exact sequences of complexes in either variable into a termwise split short exact sequence. Details omitted. \square

Lemma 20.42.5. Let (X, \mathcal{O}_ X) be a ringed space. Given K, L, M in D(\mathcal{O}_ X) there is a canonical morphism

R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M) \otimes _{\mathcal{O}_ X}^\mathbf {L} R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L) \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, M)

in D(\mathcal{O}_ X) functorial in K, L, M.

Proof. Choose a K-injective complex \mathcal{I}^\bullet representing M, a K-injective complex \mathcal{J}^\bullet representing L, and any complex of \mathcal{O}_ X-modules \mathcal{K}^\bullet representing K. By Lemma 20.41.2 there is a map of complexes

\text{Tot}\left( \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{J}^\bullet , \mathcal{I}^\bullet ) \otimes _{\mathcal{O}_ X} \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{J}^\bullet ) \right) \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{I}^\bullet )

The complexes of \mathcal{O}_ X-modules \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{J}^\bullet , \mathcal{I}^\bullet ), \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{J}^\bullet ), and \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{I}^\bullet ) represent R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M), R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L), and R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, M). If we choose a K-flat complex \mathcal{H}^\bullet and a quasi-isomorphism \mathcal{H}^\bullet \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{J}^\bullet ), then there is a map

\text{Tot}\left( \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{J}^\bullet , \mathcal{I}^\bullet ) \otimes _{\mathcal{O}_ X} \mathcal{H}^\bullet \right) \longrightarrow \text{Tot}\left( \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{J}^\bullet , \mathcal{I}^\bullet ) \otimes _{\mathcal{O}_ X} \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{J}^\bullet ) \right)

whose source represents R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M) \otimes _{\mathcal{O}_ X}^\mathbf {L} R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L). Composing the two displayed arrows gives the desired map. We omit the proof that the construction is functorial. \square

Lemma 20.42.6. Let (X, \mathcal{O}_ X) be a ringed space. Given K, L, M in D(\mathcal{O}_ X) there is a canonical morphism

K \otimes _{\mathcal{O}_ X}^\mathbf {L} R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (M, L) \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (M, K \otimes _{\mathcal{O}_ X}^\mathbf {L} L)

in D(\mathcal{O}_ X) functorial in K, L, M.

Proof. Choose a K-flat complex \mathcal{K}^\bullet representing K, and a K-injective complex \mathcal{I}^\bullet representing L, and choose any complex of \mathcal{O}_ X-modules \mathcal{M}^\bullet representing M. Choose a quasi-isomorphism \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{I}^\bullet ) \to \mathcal{J}^\bullet where \mathcal{J}^\bullet is K-injective. Then we use the map

\text{Tot}\left( \mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{M}^\bullet , \mathcal{I}^\bullet ) \right) \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{M}^\bullet , \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{I}^\bullet )) \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{M}^\bullet , \mathcal{J}^\bullet )

where the first map is the map from Lemma 20.41.3. \square

Lemma 20.42.7. Let (X, \mathcal{O}_ X) be a ringed space. Given K, L in D(\mathcal{O}_ X) there is a canonical morphism

K \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, K \otimes _{\mathcal{O}_ X}^\mathbf {L} L)

in D(\mathcal{O}_ X) functorial in both K and L.

Proof. Choose a K-flat complex \mathcal{K}^\bullet representing K and any complex of \mathcal{O}_ X-modules \mathcal{L}^\bullet representing L. Choose a K-injective complex \mathcal{J}^\bullet and a quasi-isomorphism \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{L}^\bullet ) \to \mathcal{J}^\bullet . Then we use

\mathcal{K}^\bullet \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{L}^\bullet , \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{L}^\bullet )) \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{L}^\bullet , \mathcal{J}^\bullet )

where the first map comes from Lemma 20.41.4. \square

Lemma 20.42.8. Let (X, \mathcal{O}_ X) be a ringed space. Let L be an object of D(\mathcal{O}_ X). Set L^\vee = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, \mathcal{O}_ X). For M in D(\mathcal{O}_ X) there is a canonical map

20.42.8.1
\begin{equation} \label{cohomology-equation-eval} M \otimes ^\mathbf {L}_{\mathcal{O}_ X} L^\vee \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M) \end{equation}

which induces a canonical map

H^0(X, M \otimes ^\mathbf {L}_{\mathcal{O}_ X} L^\vee ) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(L, M)

functorial in M in D(\mathcal{O}_ X).

Proof. The map (20.42.8.1) is a special case of Lemma 20.42.5 using the identification M = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ X, M). \square

Lemma 20.42.9. Let (X, \mathcal{O}_ X) be a ringed space. Let K, L, M be objects of D(\mathcal{O}_ X). There is a canonical morphism

R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M) \otimes _{\mathcal{O}_ X}^\mathbf {L} K \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L), M)

in D(\mathcal{O}_ X) functorial in K, L, M.

Proof. Choose a K-injective complex \mathcal{I}^\bullet representing M, a K-injective complex \mathcal{J}^\bullet representing L, and a K-flat complex \mathcal{K}^\bullet representing K. The map is defined using the map

\text{Tot}(\mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{J}^\bullet , \mathcal{I}^\bullet ) \otimes _{\mathcal{O}_ X} \mathcal{K}^\bullet ) \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{J}^\bullet ), \mathcal{I}^\bullet )

of Lemma 20.41.5. By our particular choice of complexes the left hand side represents R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M) \otimes _{\mathcal{O}_ X}^\mathbf {L} K and the right hand side represents R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L), M). We omit the proof that this is functorial in all three objects of D(\mathcal{O}_ X). \square

Remark 20.42.10. Let (X, \mathcal{O}_ X) be a ringed space. For K, K', M, M' in D(\mathcal{O}_ X) there is a canonical map

R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, K') \otimes _{\mathcal{O}_ X}^\mathbf {L} R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (M, M') \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K \otimes _{\mathcal{O}_ X}^\mathbf {L} M, K' \otimes _{\mathcal{O}_ X}^\mathbf {L} M')

Namely, by (20.42.0.1) is the same thing as a map

R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, K') \otimes _{\mathcal{O}_ X}^\mathbf {L} R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (M, M') \otimes _{\mathcal{O}_ X}^\mathbf {L} K \otimes _{\mathcal{O}_ X}^\mathbf {L} M \longrightarrow K' \otimes _{\mathcal{O}_ X}^\mathbf {L} M'

For this we can first flip the middle two factors (with sign rules as in More on Algebra, Section 15.72) and use the maps

R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, K') \otimes _{\mathcal{O}_ X}^\mathbf {L} K \to K' \quad \text{and}\quad R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (M, M') \otimes _{\mathcal{O}_ X}^\mathbf {L} M \to M'

from Lemma 20.42.5 when thinking of K = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ X, K) and similarly for K', M, and M'.

Remark 20.42.11. Let f : X \to Y be a morphism of ringed spaces. Let K, L be objects of D(\mathcal{O}_ X). We claim there is a canonical map

Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, K) \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (Rf_*L, Rf_*K)

Namely, by (20.42.0.1) this is the same thing as a map Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, K) \otimes _{\mathcal{O}_ Y}^\mathbf {L} Rf_*L \to Rf_*K. For this we can use the composition

Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, K) \otimes _{\mathcal{O}_ Y}^\mathbf {L} Rf_*L \to Rf_*(R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, K) \otimes _{\mathcal{O}_ X}^\mathbf {L} L) \to Rf_*K

where the first arrow is the relative cup product (Remark 20.28.7) and the second arrow is Rf_* applied to the canonical map R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, K) \otimes _{\mathcal{O}_ X}^\mathbf {L} L \to K coming from Lemma 20.42.5 (with \mathcal{O}_ X in one of the spots).

Remark 20.42.12. Let h : X \to Y be a morphism of ringed spaces. Let K, L, M be objects of D(\mathcal{O}_ Y). The diagram

\xymatrix{ Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(K, M) \otimes _{\mathcal{O}_ Y}^\mathbf {L} Rf_*M \ar[r] \ar[d] & Rf_*\left(R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(K, M) \otimes _{\mathcal{O}_ X}^\mathbf {L} M\right) \ar[d] \\ R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(Rf_*K, Rf_*M) \otimes _{\mathcal{O}_ Y}^\mathbf {L} Rf_*M \ar[r] & Rf_*M }

is commutative. Here the left vertical arrow comes from Remark 20.42.11. The top horizontal arrow is Remark 20.28.7. The other two arrows are instances of the map in Lemma 20.42.5 (with one of the entries replaced with \mathcal{O}_ X or \mathcal{O}_ Y).

Remark 20.42.13. Let h : X \to Y be a morphism of ringed spaces. Let K, L be objects of D(\mathcal{O}_ Y). We claim there is a canonical map

Lh^*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L) \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (Lh^*K, Lh^*L)

in D(\mathcal{O}_ X). Namely, by (20.42.0.1) proved in Lemma 20.42.2 such a map is the same thing as a map

Lh^*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L) \otimes ^\mathbf {L} Lh^*K \longrightarrow Lh^*L

The source of this arrow is Lh^*(\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L) \otimes ^\mathbf {L} K) by Lemma 20.27.3 hence it suffices to construct a canonical map

R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L) \otimes ^\mathbf {L} K \longrightarrow L.

For this we take the arrow corresponding to

\text{id} : R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L) \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L)

via (20.42.0.1).

Remark 20.42.14. Suppose that

\xymatrix{ X' \ar[r]_ h \ar[d]_{f'} & X \ar[d]^ f \\ S' \ar[r]^ g & S }

is a commutative diagram of ringed spaces. Let K, L be objects of D(\mathcal{O}_ X). We claim there exists a canonical base change map

Lg^*Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L) \longrightarrow R(f')_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (Lh^*K, Lh^*L)

in D(\mathcal{O}_{S'}). Namely, we take the map adjoint to the composition

\begin{align*} L(f')^*Lg^*Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L) & = Lh^*Lf^*Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L) \\ & \to Lh^*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L) \\ & \to R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (Lh^*K, Lh^*L) \end{align*}

where the first arrow uses the adjunction mapping Lf^*Rf_* \to \text{id} and the second arrow is the canonical map constructed in Remark 20.42.13.


Comments (2)

Comment #7424 by Nik on

Some minor typos: some of the references read 20.38.X, although they link to 20.39.X.

Comment #7438 by Zhiyu Z on

@7424 Can you be more specific on where "20.39" reads "20.38"? There seems to be no "20.38" Tag used in the section..


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.