20.42 Internal hom in the derived category
Let (X, \mathcal{O}_ X) be a ringed space. Let L, M be objects of D(\mathcal{O}_ X). We would like to construct an object R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M) of D(\mathcal{O}_ X) such that for every third object K of D(\mathcal{O}_ X) there exists a canonical bijection
20.42.0.1
\begin{equation} \label{cohomology-equation-internal-hom} \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(K, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M)) = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(K \otimes _{\mathcal{O}_ X}^\mathbf {L} L, M) \end{equation}
Observe that this formula defines R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M) up to unique isomorphism by the Yoneda lemma (Categories, Lemma 4.3.5).
To construct such an object, choose a K-injective complex \mathcal{I}^\bullet representing M and any complex of \mathcal{O}_ X-modules \mathcal{L}^\bullet representing L. Then we set
R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M) = \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{L}^\bullet , \mathcal{I}^\bullet )
where the right hand side is the complex of \mathcal{O}_ X-modules constructed in Section 20.41. This is well defined by Lemma 20.41.7. We get a functor
D(\mathcal{O}_ X)^{opp} \times D(\mathcal{O}_ X) \longrightarrow D(\mathcal{O}_ X), \quad (K, L) \longmapsto R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L)
As a prelude to proving (20.42.0.1) we compute the cohomology groups of R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L).
Lemma 20.42.1. Let (X, \mathcal{O}_ X) be a ringed space. Let L, M be objects of D(\mathcal{O}_ X). For every open U we have
H^0(U, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M)) = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ U)}(L|_ U, M|_ U)
and in particular H^0(X, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M)) = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(L, M).
Proof.
Choose a K-injective complex \mathcal{I}^\bullet of \mathcal{O}_ X-modules representing M and a K-flat complex \mathcal{L}^\bullet representing L. Then \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{L}^\bullet , \mathcal{I}^\bullet ) is K-injective by Lemma 20.41.8. Hence we can compute cohomology over U by simply taking sections over U and the result follows from Lemma 20.41.6.
\square
Lemma 20.42.2. Let (X, \mathcal{O}_ X) be a ringed space. Let K, L, M be objects of D(\mathcal{O}_ X). With the construction as described above there is a canonical isomorphism
R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M)) = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K \otimes _{\mathcal{O}_ X}^\mathbf {L} L, M)
in D(\mathcal{O}_ X) functorial in K, L, M which recovers (20.42.0.1) by taking H^0(X, -).
Proof.
Choose a K-injective complex \mathcal{I}^\bullet representing M and a K-flat complex of \mathcal{O}_ X-modules \mathcal{L}^\bullet representing L. Let \mathcal{K}^\bullet be any complex of \mathcal{O}_ X-modules representing K. Then we have
\mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{L}^\bullet , \mathcal{I}^\bullet )) = \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet ( \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{L}^\bullet ), \mathcal{I}^\bullet )
by Lemma 20.41.1. Note that the left hand side represents R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M)) (use Lemma 20.41.8) and that the right hand side represents R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K \otimes _{\mathcal{O}_ X}^\mathbf {L} L, M). This proves the displayed formula of the lemma. Taking global sections and using Lemma 20.42.1 we obtain (20.42.0.1).
\square
Lemma 20.42.3. Let (X, \mathcal{O}_ X) be a ringed space. Let K, L be objects of D(\mathcal{O}_ X). The construction of R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L) commutes with restrictions to opens, i.e., for every open U we have R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K|_ U, L|_ U) = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L)|_ U.
Proof.
This is clear from the construction and Lemma 20.32.1.
\square
Lemma 20.42.4. Let (X, \mathcal{O}_ X) be a ringed space. The bifunctor R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (- , -) transforms distinguished triangles into distinguished triangles in both variables.
Proof.
This follows from the observation that the assignment
(\mathcal{L}^\bullet , \mathcal{M}^\bullet ) \longmapsto \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{L}^\bullet , \mathcal{M}^\bullet )
transforms a termwise split short exact sequences of complexes in either variable into a termwise split short exact sequence. Details omitted.
\square
Lemma 20.42.5. Let (X, \mathcal{O}_ X) be a ringed space. Given K, L, M in D(\mathcal{O}_ X) there is a canonical morphism
R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M) \otimes _{\mathcal{O}_ X}^\mathbf {L} R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L) \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, M)
in D(\mathcal{O}_ X) functorial in K, L, M.
Proof.
Choose a K-injective complex \mathcal{I}^\bullet representing M, a K-injective complex \mathcal{J}^\bullet representing L, and any complex of \mathcal{O}_ X-modules \mathcal{K}^\bullet representing K. By Lemma 20.41.2 there is a map of complexes
\text{Tot}\left( \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{J}^\bullet , \mathcal{I}^\bullet ) \otimes _{\mathcal{O}_ X} \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{J}^\bullet ) \right) \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{I}^\bullet )
The complexes of \mathcal{O}_ X-modules \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{J}^\bullet , \mathcal{I}^\bullet ), \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{J}^\bullet ), and \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{I}^\bullet ) represent R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M), R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L), and R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, M). If we choose a K-flat complex \mathcal{H}^\bullet and a quasi-isomorphism \mathcal{H}^\bullet \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{J}^\bullet ), then there is a map
\text{Tot}\left( \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{J}^\bullet , \mathcal{I}^\bullet ) \otimes _{\mathcal{O}_ X} \mathcal{H}^\bullet \right) \longrightarrow \text{Tot}\left( \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{J}^\bullet , \mathcal{I}^\bullet ) \otimes _{\mathcal{O}_ X} \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{J}^\bullet ) \right)
whose source represents R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M) \otimes _{\mathcal{O}_ X}^\mathbf {L} R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L). Composing the two displayed arrows gives the desired map. We omit the proof that the construction is functorial.
\square
Lemma 20.42.6. Let (X, \mathcal{O}_ X) be a ringed space. Given K, L, M in D(\mathcal{O}_ X) there is a canonical morphism
K \otimes _{\mathcal{O}_ X}^\mathbf {L} R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (M, L) \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (M, K \otimes _{\mathcal{O}_ X}^\mathbf {L} L)
in D(\mathcal{O}_ X) functorial in K, L, M.
Proof.
Choose a K-flat complex \mathcal{K}^\bullet representing K, and a K-injective complex \mathcal{I}^\bullet representing L, and choose any complex of \mathcal{O}_ X-modules \mathcal{M}^\bullet representing M. Choose a quasi-isomorphism \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{I}^\bullet ) \to \mathcal{J}^\bullet where \mathcal{J}^\bullet is K-injective. Then we use the map
\text{Tot}\left( \mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{M}^\bullet , \mathcal{I}^\bullet ) \right) \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{M}^\bullet , \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{I}^\bullet )) \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{M}^\bullet , \mathcal{J}^\bullet )
where the first map is the map from Lemma 20.41.3.
\square
Lemma 20.42.7. Let (X, \mathcal{O}_ X) be a ringed space. Given K, L in D(\mathcal{O}_ X) there is a canonical morphism
K \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, K \otimes _{\mathcal{O}_ X}^\mathbf {L} L)
in D(\mathcal{O}_ X) functorial in both K and L.
Proof.
Choose a K-flat complex \mathcal{K}^\bullet representing K and any complex of \mathcal{O}_ X-modules \mathcal{L}^\bullet representing L. Choose a K-injective complex \mathcal{J}^\bullet and a quasi-isomorphism \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{L}^\bullet ) \to \mathcal{J}^\bullet . Then we use
\mathcal{K}^\bullet \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{L}^\bullet , \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{L}^\bullet )) \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{L}^\bullet , \mathcal{J}^\bullet )
where the first map comes from Lemma 20.41.4.
\square
Lemma 20.42.8. Let (X, \mathcal{O}_ X) be a ringed space. Let L be an object of D(\mathcal{O}_ X). Set L^\vee = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, \mathcal{O}_ X). For M in D(\mathcal{O}_ X) there is a canonical map
20.42.8.1
\begin{equation} \label{cohomology-equation-eval} M \otimes ^\mathbf {L}_{\mathcal{O}_ X} L^\vee \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M) \end{equation}
which induces a canonical map
H^0(X, M \otimes ^\mathbf {L}_{\mathcal{O}_ X} L^\vee ) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(L, M)
functorial in M in D(\mathcal{O}_ X).
Proof.
The map (20.42.8.1) is a special case of Lemma 20.42.5 using the identification M = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ X, M).
\square
Lemma 20.42.9. Let (X, \mathcal{O}_ X) be a ringed space. Let K, L, M be objects of D(\mathcal{O}_ X). There is a canonical morphism
R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M) \otimes _{\mathcal{O}_ X}^\mathbf {L} K \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L), M)
in D(\mathcal{O}_ X) functorial in K, L, M.
Proof.
Choose a K-injective complex \mathcal{I}^\bullet representing M, a K-injective complex \mathcal{J}^\bullet representing L, and a K-flat complex \mathcal{K}^\bullet representing K. The map is defined using the map
\text{Tot}(\mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{J}^\bullet , \mathcal{I}^\bullet ) \otimes _{\mathcal{O}_ X} \mathcal{K}^\bullet ) \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{J}^\bullet ), \mathcal{I}^\bullet )
of Lemma 20.41.5. By our particular choice of complexes the left hand side represents R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M) \otimes _{\mathcal{O}_ X}^\mathbf {L} K and the right hand side represents R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L), M). We omit the proof that this is functorial in all three objects of D(\mathcal{O}_ X).
\square
Comments (2)
Comment #7424 by Nik on
Comment #7438 by Zhiyu Z on