Remark 20.42.14. Suppose that
\[ \xymatrix{ X' \ar[r]_ h \ar[d]_{f'} & X \ar[d]^ f \\ S' \ar[r]^ g & S } \]
is a commutative diagram of ringed spaces. Let $K, L$ be objects of $D(\mathcal{O}_ X)$. We claim there exists a canonical base change map
\[ Lg^*Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L) \longrightarrow R(f')_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (Lh^*K, Lh^*L) \]
in $D(\mathcal{O}_{S'})$. Namely, we take the map adjoint to the composition
\begin{align*} L(f')^*Lg^*Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L) & = Lh^*Lf^*Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L) \\ & \to Lh^*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L) \\ & \to R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (Lh^*K, Lh^*L) \end{align*}
where the first arrow uses the adjunction mapping $Lf^*Rf_* \to \text{id}$ and the second arrow is the canonical map constructed in Remark 20.42.13.
Comments (0)
There are also: