Lemma 20.42.8. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $L$ be an object of $D(\mathcal{O}_ X)$. Set $L^\vee = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, \mathcal{O}_ X)$. For $M$ in $D(\mathcal{O}_ X)$ there is a canonical map

20.42.8.1
$$\label{cohomology-equation-eval} M \otimes ^\mathbf {L}_{\mathcal{O}_ X} L^\vee \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M)$$

which induces a canonical map

$H^0(X, M \otimes ^\mathbf {L}_{\mathcal{O}_ X} L^\vee ) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(L, M)$

functorial in $M$ in $D(\mathcal{O}_ X)$.

Proof. The map (20.42.8.1) is a special case of Lemma 20.42.5 using the identification $M = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ X, M)$. $\square$

There are also:

• 2 comment(s) on Section 20.42: Internal hom in the derived category

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).