Lemma 20.42.8. Let (X, \mathcal{O}_ X) be a ringed space. Let L be an object of D(\mathcal{O}_ X). Set L^\vee = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, \mathcal{O}_ X). For M in D(\mathcal{O}_ X) there is a canonical map
20.42.8.1
\begin{equation} \label{cohomology-equation-eval} M \otimes ^\mathbf {L}_{\mathcal{O}_ X} L^\vee \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M) \end{equation}
which induces a canonical map
H^0(X, M \otimes ^\mathbf {L}_{\mathcal{O}_ X} L^\vee ) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(L, M)
functorial in M in D(\mathcal{O}_ X).
Comments (0)
There are also: