Lemma 20.42.8. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $L$ be an object of $D(\mathcal{O}_ X)$. Set $L^\vee = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, \mathcal{O}_ X)$. For $M$ in $D(\mathcal{O}_ X)$ there is a canonical map
20.42.8.1
\begin{equation} \label{cohomology-equation-eval} M \otimes ^\mathbf {L}_{\mathcal{O}_ X} L^\vee \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M) \end{equation}
which induces a canonical map
\[ H^0(X, M \otimes ^\mathbf {L}_{\mathcal{O}_ X} L^\vee ) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(L, M) \]
functorial in $M$ in $D(\mathcal{O}_ X)$.
Comments (0)
There are also: