Processing math: 100%

The Stacks project

Lemma 20.42.8. Let (X, \mathcal{O}_ X) be a ringed space. Let L be an object of D(\mathcal{O}_ X). Set L^\vee = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, \mathcal{O}_ X). For M in D(\mathcal{O}_ X) there is a canonical map

20.42.8.1
\begin{equation} \label{cohomology-equation-eval} M \otimes ^\mathbf {L}_{\mathcal{O}_ X} L^\vee \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M) \end{equation}

which induces a canonical map

H^0(X, M \otimes ^\mathbf {L}_{\mathcal{O}_ X} L^\vee ) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(L, M)

functorial in M in D(\mathcal{O}_ X).

Proof. The map (20.42.8.1) is a special case of Lemma 20.42.5 using the identification M = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ X, M). \square


Comments (0)

There are also:

  • 2 comment(s) on Section 20.42: Internal hom in the derived category

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.