Lemma 20.38.8. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $L$ be an object of $D(\mathcal{O}_ X)$. Set $L^\vee = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, \mathcal{O}_ X)$. For $M$ in $D(\mathcal{O}_ X)$ there is a canonical map

20.38.8.1
\begin{equation} \label{cohomology-equation-eval} M \otimes ^\mathbf {L}_{\mathcal{O}_ X} L^\vee \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M) \end{equation}

which induces a canonical map

\[ H^0(X, M \otimes ^\mathbf {L}_{\mathcal{O}_ X} L^\vee ) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(L, M) \]

functorial in $M$ in $D(\mathcal{O}_ X)$.

## Comments (0)