Processing math: 100%

The Stacks project

Lemma 20.42.5. Let (X, \mathcal{O}_ X) be a ringed space. Given K, L, M in D(\mathcal{O}_ X) there is a canonical morphism

R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M) \otimes _{\mathcal{O}_ X}^\mathbf {L} R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L) \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, M)

in D(\mathcal{O}_ X) functorial in K, L, M.

Proof. Choose a K-injective complex \mathcal{I}^\bullet representing M, a K-injective complex \mathcal{J}^\bullet representing L, and any complex of \mathcal{O}_ X-modules \mathcal{K}^\bullet representing K. By Lemma 20.41.2 there is a map of complexes

\text{Tot}\left( \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{J}^\bullet , \mathcal{I}^\bullet ) \otimes _{\mathcal{O}_ X} \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{J}^\bullet ) \right) \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{I}^\bullet )

The complexes of \mathcal{O}_ X-modules \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{J}^\bullet , \mathcal{I}^\bullet ), \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{J}^\bullet ), and \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{I}^\bullet ) represent R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M), R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L), and R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, M). If we choose a K-flat complex \mathcal{H}^\bullet and a quasi-isomorphism \mathcal{H}^\bullet \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{J}^\bullet ), then there is a map

\text{Tot}\left( \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{J}^\bullet , \mathcal{I}^\bullet ) \otimes _{\mathcal{O}_ X} \mathcal{H}^\bullet \right) \longrightarrow \text{Tot}\left( \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{J}^\bullet , \mathcal{I}^\bullet ) \otimes _{\mathcal{O}_ X} \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{J}^\bullet ) \right)

whose source represents R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M) \otimes _{\mathcal{O}_ X}^\mathbf {L} R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L). Composing the two displayed arrows gives the desired map. We omit the proof that the construction is functorial. \square


Comments (0)

There are also:

  • 2 comment(s) on Section 20.42: Internal hom in the derived category

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.