Lemma 20.42.5. Let (X, \mathcal{O}_ X) be a ringed space. Given K, L, M in D(\mathcal{O}_ X) there is a canonical morphism
in D(\mathcal{O}_ X) functorial in K, L, M.
Lemma 20.42.5. Let (X, \mathcal{O}_ X) be a ringed space. Given K, L, M in D(\mathcal{O}_ X) there is a canonical morphism
in D(\mathcal{O}_ X) functorial in K, L, M.
Proof. Choose a K-injective complex \mathcal{I}^\bullet representing M, a K-injective complex \mathcal{J}^\bullet representing L, and any complex of \mathcal{O}_ X-modules \mathcal{K}^\bullet representing K. By Lemma 20.41.2 there is a map of complexes
The complexes of \mathcal{O}_ X-modules \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{J}^\bullet , \mathcal{I}^\bullet ), \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{J}^\bullet ), and \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{I}^\bullet ) represent R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M), R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L), and R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, M). If we choose a K-flat complex \mathcal{H}^\bullet and a quasi-isomorphism \mathcal{H}^\bullet \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{J}^\bullet ), then there is a map
whose source represents R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M) \otimes _{\mathcal{O}_ X}^\mathbf {L} R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L). Composing the two displayed arrows gives the desired map. We omit the proof that the construction is functorial. \square
Comments (0)
There are also: