Lemma 20.41.2. Let $(X, \mathcal{O}_ X)$ be a ringed space. Given complexes $\mathcal{K}^\bullet , \mathcal{L}^\bullet , \mathcal{M}^\bullet $ of $\mathcal{O}_ X$-modules there is a canonical morphism

of complexes of $\mathcal{O}_ X$-modules.

Lemma 20.41.2. Let $(X, \mathcal{O}_ X)$ be a ringed space. Given complexes $\mathcal{K}^\bullet , \mathcal{L}^\bullet , \mathcal{M}^\bullet $ of $\mathcal{O}_ X$-modules there is a canonical morphism

\[ \text{Tot}\left( \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{L}^\bullet , \mathcal{M}^\bullet ) \otimes _{\mathcal{O}_ X} \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{L}^\bullet ) \right) \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{M}^\bullet ) \]

of complexes of $\mathcal{O}_ X$-modules.

**Proof.**
Omitted. Hint: This is proved in exactly the same way as More on Algebra, Lemma 15.71.3.
$\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)