The Stacks project

Lemma 15.70.2. Let $R$ be a ring. Given complexes $K^\bullet , L^\bullet , M^\bullet $ of $R$-modules there is a canonical morphism

\[ \text{Tot}\left( \mathop{\mathrm{Hom}}\nolimits ^\bullet (L^\bullet , M^\bullet ) \otimes _ R \mathop{\mathrm{Hom}}\nolimits ^\bullet (K^\bullet , L^\bullet ) \right) \longrightarrow \mathop{\mathrm{Hom}}\nolimits ^\bullet (K^\bullet , M^\bullet ) \]

of complexes of $R$-modules.

Proof. An element $\alpha $ of degree $n$ of the left hand side is

\[ \alpha = (\alpha ^{p, q}) \in \bigoplus \nolimits _{p + q = n} \mathop{\mathrm{Hom}}\nolimits ^ p(L^\bullet , M^\bullet ) \otimes _ R \mathop{\mathrm{Hom}}\nolimits ^ q(K^\bullet , L^\bullet ) \]

The element $\alpha ^{p, q}$ is a finite sum $\alpha ^{p, q} = \sum \beta ^ p_ i \otimes \gamma ^ q_ i$ with

\[ \beta ^ p_ i = (\beta ^{r, s}_ i) \in \prod \nolimits _{r + s = p} \mathop{\mathrm{Hom}}\nolimits _ R(L^{-s}, M^ r) \]


\[ \gamma ^ q_ i = (\gamma ^{u, v}_ i) \in \prod \nolimits _{u + v = q} \mathop{\mathrm{Hom}}\nolimits _ R(K^{-v}, L^ u) \]

The map is given by sending $\alpha $ to $\delta = (\delta ^{r, v})$ with

\[ \delta ^{r, v} = \sum \nolimits _{i, s} \beta ^{r, s}_ i \circ \gamma ^{-s, v}_ i \in \mathop{\mathrm{Hom}}\nolimits _ R(K^{-v}, M^ r) \]

For given $r + v = n$ this sum is finite as there are only finitely many nonzero $\alpha ^{p, q}$, hence only finitely many nonzero $\beta ^ p_ i$ and $\gamma ^ q_ i$. By our sign rules we have

\begin{align*} \text{d}(\alpha ^{p, q}) & = \text{d}_{\mathop{\mathrm{Hom}}\nolimits ^\bullet (L^\bullet , M^\bullet )}(\alpha ^{p, q}) + (-1)^ p \text{d}_{\mathop{\mathrm{Hom}}\nolimits ^\bullet (K^\bullet , L^\bullet )}(\alpha ^{p, q}) \\ & = \sum \Big( \text{d}_ M \circ \beta ^ p_ i \circ \gamma ^ q_ i - (-1)^ p \beta ^ p_ i \circ \text{d}_ L \circ \gamma ^ q_ i \Big) \\ & \quad + (-1)^ p \sum \Big( \beta ^ p_ i \circ \text{d}_ L \circ \gamma ^ q_ i - (-1)^ q \beta ^ p_ i \circ \gamma ^ q_ i \circ \text{d}_ K \Big) \\ & = \sum \Big( \text{d}_ M \circ \beta ^ p_ i \circ \gamma ^ q_ i -(-1)^ n \beta ^ p_ i \circ \gamma ^ q_ i \circ \text{d}_ K \Big) \end{align*}

It follows that the rules $\alpha \mapsto \delta $ is compatible with differentials and the lemma is proved. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0A8I. Beware of the difference between the letter 'O' and the digit '0'.