Lemma 15.71.4. Let $R$ be a ring. Given complexes $K^\bullet , L^\bullet , M^\bullet$ of $R$-modules there is a canonical morphism

$\text{Tot}(K^\bullet \otimes _ R \mathop{\mathrm{Hom}}\nolimits ^\bullet (M^\bullet , L^\bullet )) \longrightarrow \mathop{\mathrm{Hom}}\nolimits ^\bullet (M^\bullet , \text{Tot}(K^\bullet \otimes _ R L^\bullet ))$

of complexes of $R$-modules functorial in all three complexes.

Proof. Via the discussion in Remark 15.71.2 the existence of such a canonical map follows from Categories, Remark 4.43.12. We also give a direct construction.

Let $\alpha$ be an element of degree $n$ of the right hand side. Thus

$\alpha = (\alpha ^{p, q}) \in \prod \nolimits _{p + q = n} \mathop{\mathrm{Hom}}\nolimits _ R(M^{-q}, \text{Tot}^ p(K^\bullet \otimes _ R L^\bullet ))$

Each $\alpha ^{p, q}$ is an element

$\alpha ^{p, q} = (\alpha ^{r, s, q}) \in \mathop{\mathrm{Hom}}\nolimits _ R(M^{-q}, \bigoplus \nolimits _{r + s + q = n} K^ r \otimes _ R L^ s)$

where we think of $\alpha ^{r, s, q}$ as a family of maps such that for every $x \in M^{-q}$ only a finite number of $\alpha ^{r, s, q}(x)$ are nonzero. By our sign rules we get

\begin{align*} \text{d}(\alpha ^{r, s, q}) & = \text{d}_{\text{Tot}(K^\bullet \otimes _ R L^\bullet )} \circ \alpha ^{r, s, q} - (-1)^ n \alpha ^{r, s, q} \circ \text{d}_ M \\ & = \text{d}_ K \circ \alpha ^{r, s, q} + (-1)^ r \text{d}_ L \circ \alpha ^{r, s, q} - (-1)^ n \alpha ^{r, s, q} \circ \text{d}_ M \end{align*}

On the other hand, if $\beta$ is an element of degree $n$ of the left hand side, then

$\beta = (\beta ^{p, q}) \in \bigoplus \nolimits _{p + q = n} K^ p \otimes _ R \mathop{\mathrm{Hom}}\nolimits ^ q(M^\bullet , L^\bullet )$

and we can write $\beta ^{p, q} = \sum \gamma _ i^ p \otimes \delta _ i^ q$ with $\gamma _ i^ p \in K^ p$ and

$\delta _ i^ q = (\delta _ i^{r, s}) \in \prod \nolimits _{r + s = q} \mathop{\mathrm{Hom}}\nolimits _ R(M^{-s}, L^ r)$

By our sign rules we have

\begin{align*} \text{d}(\beta ^{p, q}) & = \text{d}_ K(\beta ^{p, q}) + (-1)^ p \text{d}_{\mathop{\mathrm{Hom}}\nolimits ^\bullet (M^\bullet , L^\bullet )}(\beta ^{p, q}) \\ & = \sum \text{d}_ K(\gamma _ i^ p) \otimes \delta _ i^ q + (-1)^ p \sum \gamma _ i^ p \otimes (\text{d}_ L \circ \delta _ i^ q - (-1)^ q \delta _ i^ q \circ \text{d}_ M) \end{align*}

We send the element $\beta$ to $\alpha$ with

$\alpha ^{r, s, q} = c^{r, s, q}(\sum \gamma _ i^ r \otimes \delta _ i^{s, q})$

where $c^{r, s, q} : K^ r \otimes _ R \mathop{\mathrm{Hom}}\nolimits _ R(M^{-q}, L^ s) \to \mathop{\mathrm{Hom}}\nolimits _ R(M^{-q}, K^ r \otimes _ R L^ s)$ is the canonical map. For a given $\beta$ and $r$ there are only finitely many nonzero $\gamma _ i^ r$ hence only finitely many nonzero $\alpha ^{r, s, q}$ are nonzero (for a given $r$). Thus this family of maps satisfies the conditions above and the map is well defined. Comparing signs we see that this is compatible with differentials. $\square$

Comment #7130 by Hao Peng on

Just to point out this one seems to be immediate consequence of tag 0A5Y.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).