Lemma 15.67.5. Let $R$ be a ring. Given complexes $K^\bullet , L^\bullet , M^\bullet $ of $R$-modules there is a canonical morphism

of complexes of $R$-modules functorial in all three complexes.

Lemma 15.67.5. Let $R$ be a ring. Given complexes $K^\bullet , L^\bullet , M^\bullet $ of $R$-modules there is a canonical morphism

\[ \text{Tot}(K^\bullet \otimes _ R \mathop{\mathrm{Hom}}\nolimits ^\bullet (M^\bullet , L^\bullet )) \longrightarrow \mathop{\mathrm{Hom}}\nolimits ^\bullet (M^\bullet , \text{Tot}(K^\bullet \otimes _ R L^\bullet )) \]

of complexes of $R$-modules functorial in all three complexes.

**Proof.**
Let $\alpha $ be an element of degree $n$ of the right hand side. Thus

\[ \alpha = (\alpha ^{p, q}) \in \prod \nolimits _{p + q = n} \mathop{\mathrm{Hom}}\nolimits _ R(M^{-q}, \text{Tot}^ p(K^\bullet \otimes _ R L^\bullet )) \]

Each $\alpha ^{p, q}$ is an element

\[ \alpha ^{p, q} = (\alpha ^{r, s, q}) \in \mathop{\mathrm{Hom}}\nolimits _ R(M^{-q}, \bigoplus \nolimits _{r + s + q = n} K^ r \otimes _ R L^ s) \]

where we think of $\alpha ^{r, s, q}$ as a family of maps such that for every $x \in M^{-q}$ only a finite number of $\alpha ^{r, s, q}(x)$ are nonzero. By our sign rules we get

\begin{align*} \text{d}(\alpha ^{r, s, q}) & = \text{d}_{\text{Tot}(K^\bullet \otimes _ R L^\bullet )} \circ \alpha ^{r, s, q} - (-1)^ n \alpha ^{r, s, q} \circ \text{d}_ M \\ & = \text{d}_ K \circ \alpha ^{r, s, q} + (-1)^ r \text{d}_ L \circ \alpha ^{r, s, q} - (-1)^ n \alpha ^{r, s, q} \circ \text{d}_ M \end{align*}

On the other hand, if $\beta $ is an element of degree $n$ of the left hand side, then

\[ \beta = (\beta ^{p, q}) \in \bigoplus \nolimits _{p + q = n} K^ p \otimes _ R \mathop{\mathrm{Hom}}\nolimits ^ q(M^\bullet , L^\bullet ) \]

and we can write $\beta ^{p, q} = \sum \gamma _ i^ p \otimes \delta _ i^ q$ with $\gamma _ i^ p \in K^ p$ and

\[ \delta _ i^ q = (\delta _ i^{r, s}) \in \prod \nolimits _{r + s = q} \mathop{\mathrm{Hom}}\nolimits _ R(M^{-s}, L^ r) \]

By our sign rules we have

\begin{align*} \text{d}(\beta ^{p, q}) & = \text{d}_ K(\beta ^{p, q}) + (-1)^ p \text{d}_{\mathop{\mathrm{Hom}}\nolimits ^\bullet (M^\bullet , L^\bullet )}(\beta ^{p, q}) \\ & = \sum \text{d}_ K(\gamma _ i^ p) \otimes \delta _ i^ q + (-1)^ p \sum \gamma _ i^ p \otimes (\text{d}_ L \circ \delta _ i^ q - (-1)^ q \delta _ i^ q \circ \text{d}_ M) \end{align*}

We send the element $\beta $ to $\alpha $ with

\[ \alpha ^{r, s, q} = c^{r, s, q}(\sum \gamma _ i^ r \otimes \delta _ i^{s, q}) \]

where $c^{r, s, q} : K^ r \otimes _ R \mathop{\mathrm{Hom}}\nolimits _ R(M^{-q}, L^ s) \to \mathop{\mathrm{Hom}}\nolimits _ R(M^{-q}, K^ r \otimes _ R L^ s)$ is the canonical map. For a given $\beta $ and $r$ there are only finitely many nonzero $\gamma _ i^ r$ hence only finitely many nonzero $\alpha ^{r, s, q}$ are nonzero (for a given $r$). Thus this family of maps satisfies the conditions above and the map is well defined. Comparing signs we see that this is compatible with differentials. $\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)