The Stacks project

15.70 Hom complexes

Let $R$ be a ring. Let $L^\bullet $ and $M^\bullet $ be two complexes of $R$-modules. We construct a complex $\mathop{\mathrm{Hom}}\nolimits ^\bullet (L^\bullet , M^\bullet )$. Namely, for each $n$ we set

\[ \mathop{\mathrm{Hom}}\nolimits ^ n(L^\bullet , M^\bullet ) = \prod \nolimits _{n = p + q} \mathop{\mathrm{Hom}}\nolimits _ R(L^{-q}, M^ p) \]

It is a good idea to think of $\mathop{\mathrm{Hom}}\nolimits ^ n$ as the $R$-module of all $R$-linear maps from $L^\bullet $ to $M^\bullet $ (viewed as graded modules) which are homogenous of degree $n$. In this terminology, we define the differential by the rule

\[ \text{d}(f) = \text{d}_ M \circ f - (-1)^ n f \circ \text{d}_ L \]

for $f \in \mathop{\mathrm{Hom}}\nolimits ^ n(L^\bullet , M^\bullet )$. We omit the verification that $\text{d}^2 = 0$. See Section 15.71 for sign rules. This construction is a special case of Differential Graded Algebra, Example 22.26.6. It follows immediately from the construction that we have

15.70.0.1
\begin{equation} \label{more-algebra-equation-cohomology-hom-complex} H^ n(\mathop{\mathrm{Hom}}\nolimits ^\bullet (L^\bullet , M^\bullet )) = \mathop{\mathrm{Hom}}\nolimits _{K(R)}(L^\bullet , M^\bullet [n]) \end{equation}

for all $n \in \mathbf{Z}$.

Lemma 15.70.1. Let $R$ be a ring. Given complexes $K^\bullet , L^\bullet , M^\bullet $ of $R$-modules there is a canonical isomorphism

\[ \mathop{\mathrm{Hom}}\nolimits ^\bullet (K^\bullet , \mathop{\mathrm{Hom}}\nolimits ^\bullet (L^\bullet , M^\bullet )) = \mathop{\mathrm{Hom}}\nolimits ^\bullet (\text{Tot}(K^\bullet \otimes _ R L^\bullet ), M^\bullet ) \]

of complexes of $R$-modules.

Proof. Let $\alpha $ be an element of degree $n$ on the left hand side. Thus

\[ \alpha = (\alpha ^{p, q}) \in \prod \nolimits _{p + q = n} \mathop{\mathrm{Hom}}\nolimits _ R(K^{-q}, \mathop{\mathrm{Hom}}\nolimits ^ p(L^\bullet , M^\bullet )) \]

Each $\alpha ^{p, q}$ is an element

\[ \alpha ^{p, q} = (\alpha ^{r, s, q}) \in \prod \nolimits _{r + s + q = n} \mathop{\mathrm{Hom}}\nolimits _ R(K^{-q}, \mathop{\mathrm{Hom}}\nolimits _ R(L^{-s}, M^ r)) \]

If we make the identifications

15.70.1.1
\begin{equation} \label{more-algebra-equation-identification} \mathop{\mathrm{Hom}}\nolimits _ R(K^{-q}, \mathop{\mathrm{Hom}}\nolimits _ R(L^{-s}, M^ r)) = \mathop{\mathrm{Hom}}\nolimits _ R(K^{-q} \otimes _ R L^{-s}, M^ r) \end{equation}

then by our sign rules we get

\begin{align*} \text{d}(\alpha ^{r, s, q}) & = \text{d}_{\mathop{\mathrm{Hom}}\nolimits ^\bullet (L^\bullet , M^\bullet )} \circ \alpha ^{r, s, q} - (-1)^ n \alpha ^{r, s, q} \circ \text{d}_ K \\ & = \text{d}_ M \circ \alpha ^{r, s, q} - (-1)^{r + s} \alpha ^{r, s, q} \circ \text{d}_ L - (-1)^{r + s + q} \alpha ^{r, s, q} \circ \text{d}_ K \end{align*}

On the other hand, if $\beta $ is an element of degree $n$ of the right hand side, then

\[ \beta = (\beta ^{r, s, q}) \in \prod \nolimits _{r + s + q = n} \mathop{\mathrm{Hom}}\nolimits _ R(K^{-q} \otimes _ R L^{-s}, M^ r) \]

and by our sign rule (Homology, Definition 12.18.3) we get

\begin{align*} \text{d}(\beta ^{r, s, q}) & = \text{d}_ M \circ \beta ^{r, s, q} - (-1)^ n \beta ^{r, s, q} \circ \text{d}_{\text{Tot}(K^\bullet \otimes L^\bullet )} \\ & = \text{d}_ M \circ \beta ^{r, s, q} - (-1)^{r + s + q} \left( \beta ^{r, s, q} \circ \text{d}_ K + (-1)^{-q} \beta ^{r, s, q} \circ \text{d}_ L \right) \end{align*}

Thus we see that the map induced by the identifications (15.70.1.1) indeed is a morphism of complexes. $\square$

Lemma 15.70.2. Let $R$ be a ring. Given complexes $K^\bullet , L^\bullet , M^\bullet $ of $R$-modules there is a canonical morphism

\[ \text{Tot}\left( \mathop{\mathrm{Hom}}\nolimits ^\bullet (L^\bullet , M^\bullet ) \otimes _ R \mathop{\mathrm{Hom}}\nolimits ^\bullet (K^\bullet , L^\bullet ) \right) \longrightarrow \mathop{\mathrm{Hom}}\nolimits ^\bullet (K^\bullet , M^\bullet ) \]

of complexes of $R$-modules.

Proof. An element $\alpha $ of degree $n$ of the left hand side is

\[ \alpha = (\alpha ^{p, q}) \in \bigoplus \nolimits _{p + q = n} \mathop{\mathrm{Hom}}\nolimits ^ p(L^\bullet , M^\bullet ) \otimes _ R \mathop{\mathrm{Hom}}\nolimits ^ q(K^\bullet , L^\bullet ) \]

The element $\alpha ^{p, q}$ is a finite sum $\alpha ^{p, q} = \sum \beta ^ p_ i \otimes \gamma ^ q_ i$ with

\[ \beta ^ p_ i = (\beta ^{r, s}_ i) \in \prod \nolimits _{r + s = p} \mathop{\mathrm{Hom}}\nolimits _ R(L^{-s}, M^ r) \]

and

\[ \gamma ^ q_ i = (\gamma ^{u, v}_ i) \in \prod \nolimits _{u + v = q} \mathop{\mathrm{Hom}}\nolimits _ R(K^{-v}, L^ u) \]

The map is given by sending $\alpha $ to $\delta = (\delta ^{r, v})$ with

\[ \delta ^{r, v} = \sum \nolimits _{i, s} \beta ^{r, s}_ i \circ \gamma ^{-s, v}_ i \in \mathop{\mathrm{Hom}}\nolimits _ R(K^{-v}, M^ r) \]

For given $r + v = n$ this sum is finite as there are only finitely many nonzero $\alpha ^{p, q}$, hence only finitely many nonzero $\beta ^ p_ i$ and $\gamma ^ q_ i$. By our sign rules we have

\begin{align*} \text{d}(\alpha ^{p, q}) & = \text{d}_{\mathop{\mathrm{Hom}}\nolimits ^\bullet (L^\bullet , M^\bullet )}(\alpha ^{p, q}) + (-1)^ p \text{d}_{\mathop{\mathrm{Hom}}\nolimits ^\bullet (K^\bullet , L^\bullet )}(\alpha ^{p, q}) \\ & = \sum \Big( \text{d}_ M \circ \beta ^ p_ i \circ \gamma ^ q_ i - (-1)^ p \beta ^ p_ i \circ \text{d}_ L \circ \gamma ^ q_ i \Big) \\ & \quad + (-1)^ p \sum \Big( \beta ^ p_ i \circ \text{d}_ L \circ \gamma ^ q_ i - (-1)^ q \beta ^ p_ i \circ \gamma ^ q_ i \circ \text{d}_ K \Big) \\ & = \sum \Big( \text{d}_ M \circ \beta ^ p_ i \circ \gamma ^ q_ i -(-1)^ n \beta ^ p_ i \circ \gamma ^ q_ i \circ \text{d}_ K \Big) \end{align*}

It follows that the rules $\alpha \mapsto \delta $ is compatible with differentials and the lemma is proved. $\square$

Lemma 15.70.3. Let $R$ be a ring. Given complexes $K^\bullet , L^\bullet , M^\bullet $ of $R$-modules there is a canonical morphism

\[ \text{Tot}(K^\bullet \otimes _ R \mathop{\mathrm{Hom}}\nolimits ^\bullet (M^\bullet , L^\bullet )) \longrightarrow \mathop{\mathrm{Hom}}\nolimits ^\bullet (M^\bullet , \text{Tot}(K^\bullet \otimes _ R L^\bullet )) \]

of complexes of $R$-modules functorial in all three complexes.

Proof. Let $\alpha $ be an element of degree $n$ of the right hand side. Thus

\[ \alpha = (\alpha ^{p, q}) \in \prod \nolimits _{p + q = n} \mathop{\mathrm{Hom}}\nolimits _ R(M^{-q}, \text{Tot}^ p(K^\bullet \otimes _ R L^\bullet )) \]

Each $\alpha ^{p, q}$ is an element

\[ \alpha ^{p, q} = (\alpha ^{r, s, q}) \in \mathop{\mathrm{Hom}}\nolimits _ R(M^{-q}, \bigoplus \nolimits _{r + s + q = n} K^ r \otimes _ R L^ s) \]

where we think of $\alpha ^{r, s, q}$ as a family of maps such that for every $x \in M^{-q}$ only a finite number of $\alpha ^{r, s, q}(x)$ are nonzero. By our sign rules we get

\begin{align*} \text{d}(\alpha ^{r, s, q}) & = \text{d}_{\text{Tot}(K^\bullet \otimes _ R L^\bullet )} \circ \alpha ^{r, s, q} - (-1)^ n \alpha ^{r, s, q} \circ \text{d}_ M \\ & = \text{d}_ K \circ \alpha ^{r, s, q} + (-1)^ r \text{d}_ L \circ \alpha ^{r, s, q} - (-1)^ n \alpha ^{r, s, q} \circ \text{d}_ M \end{align*}

On the other hand, if $\beta $ is an element of degree $n$ of the left hand side, then

\[ \beta = (\beta ^{p, q}) \in \bigoplus \nolimits _{p + q = n} K^ p \otimes _ R \mathop{\mathrm{Hom}}\nolimits ^ q(M^\bullet , L^\bullet ) \]

and we can write $\beta ^{p, q} = \sum \gamma _ i^ p \otimes \delta _ i^ q$ with $\gamma _ i^ p \in K^ p$ and

\[ \delta _ i^ q = (\delta _ i^{r, s}) \in \prod \nolimits _{r + s = q} \mathop{\mathrm{Hom}}\nolimits _ R(M^{-s}, L^ r) \]

By our sign rules we have

\begin{align*} \text{d}(\beta ^{p, q}) & = \text{d}_ K(\beta ^{p, q}) + (-1)^ p \text{d}_{\mathop{\mathrm{Hom}}\nolimits ^\bullet (M^\bullet , L^\bullet )}(\beta ^{p, q}) \\ & = \sum \text{d}_ K(\gamma _ i^ p) \otimes \delta _ i^ q + (-1)^ p \sum \gamma _ i^ p \otimes (\text{d}_ L \circ \delta _ i^ q - (-1)^ q \delta _ i^ q \circ \text{d}_ M) \end{align*}

We send the element $\beta $ to $\alpha $ with

\[ \alpha ^{r, s, q} = c^{r, s, q}(\sum \gamma _ i^ r \otimes \delta _ i^{s, q}) \]

where $c^{r, s, q} : K^ r \otimes _ R \mathop{\mathrm{Hom}}\nolimits _ R(M^{-q}, L^ s) \to \mathop{\mathrm{Hom}}\nolimits _ R(M^{-q}, K^ r \otimes _ R L^ s)$ is the canonical map. For a given $\beta $ and $r$ there are only finitely many nonzero $\gamma _ i^ r$ hence only finitely many nonzero $\alpha ^{r, s, q}$ are nonzero (for a given $r$). Thus this family of maps satisfies the conditions above and the map is well defined. Comparing signs we see that this is compatible with differentials. $\square$

Lemma 15.70.4. Let $R$ be a ring. Given complexes $K^\bullet , L^\bullet $ of $R$-modules there is a canonical morphism

\[ K^\bullet \longrightarrow \mathop{\mathrm{Hom}}\nolimits ^\bullet (L^\bullet , \text{Tot}(K^\bullet \otimes _ R L^\bullet )) \]

of complexes of $R$-modules functorial in both complexes.

Proof. This is a special case of Lemma 15.70.3 but we will also construct it directly here. Let $\alpha $ be an element of degree $n$ of the right hand side. Thus

\[ \alpha = (\alpha ^{p, q}) \in \prod \nolimits _{p + q = n} \mathop{\mathrm{Hom}}\nolimits _ R(L^{-q}, \text{Tot}^ p(K^\bullet \otimes _ R L^\bullet )) \]

Each $\alpha ^{p, q}$ is an element

\[ \alpha ^{p, q} = (\alpha ^{r, s, q}) \in \mathop{\mathrm{Hom}}\nolimits _ R(L^{-q}, \bigoplus \nolimits _{r + s + q = n} K^ r \otimes _ R L^ s) \]

where we think of $\alpha ^{r, s, q}$ as a family of maps such that for every $x \in L^{-q}$ only a finite number of $\alpha ^{r, s, q}(x)$ are nonzero. By our sign rules we get

\begin{align*} \text{d}(\alpha ^{r, s, q}) & = \text{d}_{\text{Tot}(K^\bullet \otimes _ R L^\bullet )} \circ \alpha ^{r, s, q} - (-1)^ n \alpha ^{r, s, q} \circ \text{d}_ L \\ & = \text{d}_ K \circ \alpha ^{r, s, q} + (-1)^ r \text{d}_ L \circ \alpha ^{r, s, q} - (-1)^ n \alpha ^{r, s, q} \circ \text{d}_ L \end{align*}

Now an element $\beta \in K^ n$ we send to $\alpha $ with $\alpha ^{n, -q, q} = \beta \otimes \text{id}_{L^{-q}}$ and $\alpha ^{r, s, q} = 0$ if $r \not= n$. This is indeed an element as above, as for fixed $q$ there is only one nonzero $\alpha ^{r, s, q}$. The description of the differential shows this is compatible with differentials. $\square$

Lemma 15.70.5. Let $R$ be a ring. Given complexes $K^\bullet , L^\bullet , M^\bullet $ of $R$-modules there is a canonical morphism

\[ \text{Tot}(\mathop{\mathrm{Hom}}\nolimits ^\bullet (L^\bullet , M^\bullet ) \otimes _ R K^\bullet ) \longrightarrow \mathop{\mathrm{Hom}}\nolimits ^\bullet (\mathop{\mathrm{Hom}}\nolimits ^\bullet (K^\bullet , L^\bullet ), M^\bullet ) \]

of complexes of $R$-modules functorial in all three complexes.

Proof. Consider an element $\beta $ of degree $n$ of the right hand side. Then

\[ \beta = (\beta ^{p, s}) \in \prod \nolimits _{p + s = n} \mathop{\mathrm{Hom}}\nolimits _ R(\mathop{\mathrm{Hom}}\nolimits ^{-s}(K^\bullet , L^\bullet ), M^ p) \]

Our sign rules tell us that

\begin{align*} \text{d}(\beta ^{p, s}) & = \text{d}_ M \circ \beta ^{p, s} - (-1)^ n \beta ^{p, s} \circ \text{d}_{\mathop{\mathrm{Hom}}\nolimits ^\bullet (K^\bullet , L^\bullet )} \end{align*}

We can describe the last term as follows

\[ (\beta ^{p, s} \circ \text{d}_{\mathop{\mathrm{Hom}}\nolimits ^\bullet (K^\bullet , L^\bullet )})(f) = \beta ^{p, s}(\text{d}_ L \circ f - (-1)^{s + 1} f \circ \text{d}_ K) \]

if $f \in \mathop{\mathrm{Hom}}\nolimits ^{-s - 1}(K^\bullet , L^\bullet )$. We conclude that in some unspecified sense $\text{d}(\beta ^{p, s})$ is a sum of three terms with signs as follows

15.70.5.1
\begin{equation} \label{more-algebra-equation-beta} \text{d}(\beta ^{p, s}) = \text{d}_ M(\beta ^{p, s}) -(-1)^ n\text{d}_ L(\beta ^{p, s}) + (-1)^{p + 1}\text{d}_ K(\beta ^{p, s}) \end{equation}

Next, we consider an element $\alpha $ of degree $n$ of the left hand side. We can write it like so

\[ \alpha = (\alpha ^{t, r}) \in \bigoplus \nolimits _{t + r = n} \mathop{\mathrm{Hom}}\nolimits ^ t(L^\bullet , M^\bullet ) \otimes K^ r \]

Each $\alpha ^{t, r}$ maps to an element

\[ \alpha ^{t, r} \mapsto (\alpha ^{p, q, r}) \in \prod \nolimits _{p + q = t} \mathop{\mathrm{Hom}}\nolimits _ R(L^{-q}, M^ p) \otimes _ R K^ r \]

Our sign rules tell us that

\begin{align*} \text{d}(\alpha ^{p, q, r}) & = \text{d}_{\mathop{\mathrm{Hom}}\nolimits ^\bullet (L^\bullet , M^\bullet )}(\alpha ^{p, q, r}) + (-1)^{p + q} \text{d}_ K(\alpha ^{p, q, r}) \end{align*}

where if we further write $\alpha ^{p, q, r} = \sum g_ i^{p, q} \otimes k_ i^ r$ then we have

\[ \text{d}_{\mathop{\mathrm{Hom}}\nolimits ^\bullet (L^\bullet , M^\bullet )}(\alpha ^{p, q, r}) = \sum (\text{d}_ M \circ g_ i^{p, q}) \otimes k_ i^ r - (-1)^{p + q} \sum (g_ i^{p, q} \circ \text{d}_ L) \otimes k_ i^ r \]

We conclude that in some unspecified sense $\text{d}(\alpha ^{p, q, r})$ is a sum of three terms with signs as follows

15.70.5.2
\begin{equation} \label{more-algebra-equation-alpha} \text{d}(\alpha ^{p, q, r}) = \text{d}_ M(\alpha ^{p, q, r}) -(-1)^{p + q}\text{d}_ L(\alpha ^{p, q, r}) + (-1)^{p + q}\text{d}_ K(\alpha ^{p, q, r}) \end{equation}

To define our map we will use the canonical maps

\[ c_{p, q, r} : \mathop{\mathrm{Hom}}\nolimits _ R(L^{-q}, M^ p) \otimes _ R K^ r \longrightarrow \mathop{\mathrm{Hom}}\nolimits _ R(\mathop{\mathrm{Hom}}\nolimits _ R(K^ r, L^{-q}), M^ p) \]

which sends $\varphi \otimes k$ to the map $\psi \mapsto \varphi (\psi (k))$. This is functorial in all three variables. With $s = q + r$ there is an inclusion

\[ \mathop{\mathrm{Hom}}\nolimits _ R(\mathop{\mathrm{Hom}}\nolimits _ R(K^ r, L^{-q}), M^ p) \subset \mathop{\mathrm{Hom}}\nolimits _ R(\mathop{\mathrm{Hom}}\nolimits ^{-s}(K^\bullet , L^\bullet ), M^ p) \]

coming from the projection $\mathop{\mathrm{Hom}}\nolimits ^{-s}(K^\bullet , L^\bullet ) \to \mathop{\mathrm{Hom}}\nolimits _ R(K^ r, L^{-q})$. Since $\alpha ^{p, q, r}$ is nonzero only for a finite number of $r$ we see that for a given $s$ there is only a finite number of $q, r$ with $q + r = s$. Thus we can send $\alpha $ to the element $\beta $ with

\[ \beta ^{p, s} = \sum \nolimits _{q + r = s} \epsilon _{p, q, r} c_{p, q, r}(\alpha ^{p, q, r}) \]

where where the sum uses the inclusions given above and where $\epsilon _{p, q, r} \in \{ \pm 1\} $. Comparing signs in the equations (15.70.5.1) and (15.70.5.2) we see that

  1. $\epsilon _{p, q, r} = \epsilon _{p + 1, q, r}$

  2. $-(-1)^ n\epsilon _{p, q, r} = -(-1)^{p + q}\epsilon _{p, q - 1, r}$ or equivalently $\epsilon _{p, q, r} = (-1)^ r\epsilon _{p, q - 1, r}$

  3. $(-1)^{p + 1}\epsilon _{p, q, r} = (-1)^{p + q}\epsilon _{p, q, r + 1}$ or equivalently $(-1)^{q + 1}\epsilon _{p, q, r} = \epsilon _{p, q, r + 1}$.

A good solution is to take

\[ \epsilon _{p, r, s} = (-1)^{r + qr} \]

The choice of this sign is explained in the remark following the proof. $\square$

Remark 15.70.6. In the yoga of super vector spaces the sign used in the proof of Lemma 15.70.5 above can be explained as follows. A super vector space is just a finite dimensional vector space $V$ which comes with a direct sum decomposition $V = V^+ \oplus V^-$. Here we think of the elements of $V^+$ as the even elements and the elements of $V^-$ as the odd ones. Given two super vector spaces $V$ and $W$ we set

\[ (V \otimes W)^+ = (V^+ \otimes W^+) \oplus (V^- \otimes W^-) \]

and similarly for the odd part. In the category of super vector spaces the isomorphism

\[ \psi : V \otimes W \longrightarrow W \otimes V \]

is defined to be the usual one, except that on the summand $V^- \otimes W^-$ we use the negative of the usual identification. In this way we obtain a symmetric monoidal category, see Categories, Section 4.42. An object $V$ of the category of super vector spaces has a left dual which we denote $V^\vee $ which comes equipped with an identity $\eta : \mathbf{1} \to V \otimes V^\vee $ and an evaluation map $\epsilon : V^\vee \otimes V \to \mathbf{1}$ which induce canonical isomorphisms $\mathop{\mathrm{Hom}}\nolimits (V, W) = W \otimes V^\vee $ and $\mathop{\mathrm{Hom}}\nolimits (V^\vee , U) = V \otimes U$, see Categories, Lemma 4.42.6. Given three super vector spaces $U$, $V$, $W$ we can try to construct the analogue

\[ c : \mathop{\mathrm{Hom}}\nolimits (V, W) \otimes U \longrightarrow \mathop{\mathrm{Hom}}\nolimits (\mathop{\mathrm{Hom}}\nolimits (U, V), W) \]

of the maps $c_{p, r, s}$ which occur in the lemma above. Using the formulae given above (which do not involve signs) this becomes a map

\[ W \otimes V^\vee \otimes U \longrightarrow W \otimes (V \otimes U^\vee )^\vee = W \otimes (U^\vee )^\vee \otimes V^\vee \]

To find this arrow in a canonical fashion we need to do two things:

  1. we need to use the commutativity constraint $\psi : V^\vee \otimes U \to U \otimes V^\vee $ which introduces a sign on $(V^\vee )^- \otimes U^-$, and

  2. we need to use the canonical isomorphism $U \to (U^\vee )^\vee $ which comes from the identification of $U^\vee $ as the right dual of $U$ using $\psi $ as in Categories, Lemma 4.42.10. This differs from the usual identification by $-1$ on the odd part of $U$.

Part (1) explains the sign $(-1)^{qr}$ in the proof of the lemma and part (2) explains the sign $(-1)^ r$ in the proof of the lemma.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0A8H. Beware of the difference between the letter 'O' and the digit '0'.