The Stacks project

Lemma 15.67.1. Let $R$ be a ring. Given complexes $K^\bullet , L^\bullet , M^\bullet $ of $R$-modules there is a canonical isomorphism

\[ \mathop{\mathrm{Hom}}\nolimits ^\bullet (K^\bullet , \mathop{\mathrm{Hom}}\nolimits ^\bullet (L^\bullet , M^\bullet )) = \mathop{\mathrm{Hom}}\nolimits ^\bullet (\text{Tot}(K^\bullet \otimes _ R L^\bullet ), M^\bullet ) \]

of complexes of $R$-modules.

Proof. Let $\alpha $ be an element of degree $n$ on the left hand side. Thus

\[ \alpha = (\alpha ^{p, q}) \in \prod \nolimits _{p + q = n} \mathop{\mathrm{Hom}}\nolimits _ R(K^{-q}, \mathop{\mathrm{Hom}}\nolimits ^ p(L^\bullet , M^\bullet )) \]

Each $\alpha ^{p, q}$ is an element

\[ \alpha ^{p, q} = (\alpha ^{r, s, q}) \in \prod \nolimits _{r + s + q = n} \mathop{\mathrm{Hom}}\nolimits _ R(K^{-q}, \mathop{\mathrm{Hom}}\nolimits _ R(L^{-s}, M^ r)) \]

If we make the identifications

15.67.1.1
\begin{equation} \label{more-algebra-equation-identification} \mathop{\mathrm{Hom}}\nolimits _ R(K^{-q}, \mathop{\mathrm{Hom}}\nolimits _ R(L^{-s}, M^ r)) = \mathop{\mathrm{Hom}}\nolimits _ R(K^{-q} \otimes _ R L^{-s}, M^ r) \end{equation}

then by our sign rules we get

\begin{align*} \text{d}(\alpha ^{r, s, q}) & = \text{d}_{\mathop{\mathrm{Hom}}\nolimits ^\bullet (L^\bullet , M^\bullet )} \circ \alpha ^{r, s, q} - (-1)^ n \alpha ^{r, s, q} \circ \text{d}_ K \\ & = \text{d}_ M \circ \alpha ^{r, s, q} - (-1)^{r + s} \alpha ^{r, s, q} \circ \text{d}_ L - (-1)^{r + s + q} \alpha ^{r, s, q} \circ \text{d}_ K \end{align*}

On the other hand, if $\beta $ is an element of degree $n$ of the right hand side, then

\[ \beta = (\beta ^{r, s, q}) \in \prod \nolimits _{r + s + q = n} \mathop{\mathrm{Hom}}\nolimits _ R(K^{-q} \otimes _ R L^{-s}, M^ r) \]

and by our sign rule (Homology, Definition 12.22.3) we get

\begin{align*} \text{d}(\beta ^{r, s, q}) & = \text{d}_ M \circ \beta ^{r, s, q} - (-1)^ n \beta ^{r, s, q} \circ \text{d}_{\text{Tot}(K^\bullet \otimes L^\bullet )} \\ & = \text{d}_ M \circ \beta ^{r, s, q} - (-1)^{r + s + q} \left( \beta ^{r, s, q} \circ \text{d}_ K + (-1)^{-q} \beta ^{r, s, q} \circ \text{d}_ L \right) \end{align*}

Thus we see that the map induced by the identifications (15.67.1.1) indeed is a morphism of complexes. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0A5Y. Beware of the difference between the letter 'O' and the digit '0'.