Lemma 20.37.1. Let $(X, \mathcal{O}_ X)$ be a ringed space. Given complexes $\mathcal{K}^\bullet , \mathcal{L}^\bullet , \mathcal{M}^\bullet $ of $\mathcal{O}_ X$-modules there is an isomorphism

\[ \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{L}^\bullet , \mathcal{M}^\bullet )) = \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{L}^\bullet ), \mathcal{M}^\bullet ) \]

of complexes of $\mathcal{O}_ X$-modules functorial in $\mathcal{K}^\bullet , \mathcal{L}^\bullet , \mathcal{M}^\bullet $.

## Comments (0)