Lemma 20.38.3. Let $(X, \mathcal{O}_ X)$ be a ringed space. Given complexes $\mathcal{K}^\bullet , \mathcal{L}^\bullet , \mathcal{M}^\bullet $ of $\mathcal{O}_ X$-modules there is a canonical morphism

\[ \text{Tot}\left( \mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{M}^\bullet , \mathcal{L}^\bullet ) \right) \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{M}^\bullet , \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{L}^\bullet )) \]

of complexes of $\mathcal{O}_ X$-modules functorial in all three complexes.

## Comments (0)