Lemma 20.42.9. Let (X, \mathcal{O}_ X) be a ringed space. Let K, L, M be objects of D(\mathcal{O}_ X). There is a canonical morphism
in D(\mathcal{O}_ X) functorial in K, L, M.
Lemma 20.42.9. Let (X, \mathcal{O}_ X) be a ringed space. Let K, L, M be objects of D(\mathcal{O}_ X). There is a canonical morphism
in D(\mathcal{O}_ X) functorial in K, L, M.
Proof. Choose a K-injective complex \mathcal{I}^\bullet representing M, a K-injective complex \mathcal{J}^\bullet representing L, and a K-flat complex \mathcal{K}^\bullet representing K. The map is defined using the map
of Lemma 20.41.5. By our particular choice of complexes the left hand side represents R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M) \otimes _{\mathcal{O}_ X}^\mathbf {L} K and the right hand side represents R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L), M). We omit the proof that this is functorial in all three objects of D(\mathcal{O}_ X). \square
Comments (0)
There are also: