Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Remark 20.42.10. Let $(X, \mathcal{O}_ X)$ be a ringed space. For $K, K', M, M'$ in $D(\mathcal{O}_ X)$ there is a canonical map

\[ R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, K') \otimes _{\mathcal{O}_ X}^\mathbf {L} R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (M, M') \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K \otimes _{\mathcal{O}_ X}^\mathbf {L} M, K' \otimes _{\mathcal{O}_ X}^\mathbf {L} M') \]

Namely, by (20.42.0.1) is the same thing as a map

\[ R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, K') \otimes _{\mathcal{O}_ X}^\mathbf {L} R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (M, M') \otimes _{\mathcal{O}_ X}^\mathbf {L} K \otimes _{\mathcal{O}_ X}^\mathbf {L} M \longrightarrow K' \otimes _{\mathcal{O}_ X}^\mathbf {L} M' \]

For this we can first flip the middle two factors (with sign rules as in More on Algebra, Section 15.72) and use the maps

\[ R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, K') \otimes _{\mathcal{O}_ X}^\mathbf {L} K \to K' \quad \text{and}\quad R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (M, M') \otimes _{\mathcal{O}_ X}^\mathbf {L} M \to M' \]

from Lemma 20.42.5 when thinking of $K = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ X, K)$ and similarly for $K'$, $M$, and $M'$.


Comments (0)

There are also:

  • 2 comment(s) on Section 20.42: Internal hom in the derived category

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.