Lemma 20.39.2. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $K, L, M$ be objects of $D(\mathcal{O}_ X)$. With the construction as described above there is a canonical isomorphism

\[ R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M)) = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K \otimes _{\mathcal{O}_ X}^\mathbf {L} L, M) \]

in $D(\mathcal{O}_ X)$ functorial in $K, L, M$ which recovers (20.39.0.1) by taking $H^0(X, -)$.

**Proof.**
Choose a K-injective complex $\mathcal{I}^\bullet $ representing $M$ and a K-flat complex of $\mathcal{O}_ X$-modules $\mathcal{L}^\bullet $ representing $L$. Let $\mathcal{H}^\bullet $ be the complex described above. For any complex of $\mathcal{O}_ X$-modules $\mathcal{K}^\bullet $ we have

\[ \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{L}^\bullet , \mathcal{I}^\bullet )) = \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet ( \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{L}^\bullet ), \mathcal{I}^\bullet ) \]

by Lemma 20.38.1. Note that the left hand side represents $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M))$ (use Lemma 20.38.8) and that the right hand side represents $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K \otimes _{\mathcal{O}_ X}^\mathbf {L} L, M)$. This proves the displayed formula of the lemma. Taking global sections and using Lemma 20.39.1 we obtain (20.39.0.1).
$\square$

## Comments (0)