Lemma 20.42.2. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $K, L, M$ be objects of $D(\mathcal{O}_ X)$. With the construction as described above there is a canonical isomorphism

$R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M)) = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K \otimes _{\mathcal{O}_ X}^\mathbf {L} L, M)$

in $D(\mathcal{O}_ X)$ functorial in $K, L, M$ which recovers (20.42.0.1) by taking $H^0(X, -)$.

Proof. Choose a K-injective complex $\mathcal{I}^\bullet$ representing $M$ and a K-flat complex of $\mathcal{O}_ X$-modules $\mathcal{L}^\bullet$ representing $L$. Let $\mathcal{K}^\bullet$ be any complex of $\mathcal{O}_ X$-modules representing $K$. Then we have

$\mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{L}^\bullet , \mathcal{I}^\bullet )) = \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet ( \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{L}^\bullet ), \mathcal{I}^\bullet )$

by Lemma 20.41.1. Note that the left hand side represents $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M))$ (use Lemma 20.41.8) and that the right hand side represents $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K \otimes _{\mathcal{O}_ X}^\mathbf {L} L, M)$. This proves the displayed formula of the lemma. Taking global sections and using Lemma 20.42.1 we obtain (20.42.0.1). $\square$

Comment #6719 by Bach on

There is suddenly a complex H in the proof of 08DJ.

There are also:

• 2 comment(s) on Section 20.42: Internal hom in the derived category

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).