Lemma 20.42.3. Let (X, \mathcal{O}_ X) be a ringed space. Let K, L be objects of D(\mathcal{O}_ X). The construction of R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L) commutes with restrictions to opens, i.e., for every open U we have R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K|_ U, L|_ U) = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L)|_ U.
Proof. This is clear from the construction and Lemma 20.32.1. \square
Comments (0)
There are also: