Remark 20.28.7. Let f : (X, \mathcal{O}_ X) \to (Y, \mathcal{O}_ Y) be a morphism of ringed spaces. The adjointness of Lf^* and Rf_* allows us to construct a relative cup product
in D(\mathcal{O}_ Y) for all K, L in D(\mathcal{O}_ X). Namely, this map is adjoint to a map Lf^*(Rf_*K \otimes _{\mathcal{O}_ Y}^\mathbf {L} Rf_*L) \to K \otimes _{\mathcal{O}_ X}^\mathbf {L} L for which we can take the composition of the isomorphism Lf^*(Rf_*K \otimes _{\mathcal{O}_ Y}^\mathbf {L} Rf_*L) = Lf^*Rf_*K \otimes _{\mathcal{O}_ X}^\mathbf {L} Lf^*Rf_*L (Lemma 20.27.3) with the map Lf^*Rf_*K \otimes _{\mathcal{O}_ X}^\mathbf {L} Lf^*Rf_*L \to K \otimes _{\mathcal{O}_ X}^\mathbf {L} L coming from the counit Lf^* \circ Rf_* \to \text{id}.
Comments (0)
There are also: