Lemma 20.49.2. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $E$ be an object of $D(\mathcal{O}_ X)$.
If there exists an open covering $X = \bigcup U_ i$ and strictly perfect complexes $\mathcal{E}_ i^\bullet $ on $U_ i$ such that $\mathcal{E}_ i^\bullet $ represents $E|_{U_ i}$ in $D(\mathcal{O}_{U_ i})$, then $E$ is perfect.
If $E$ is perfect, then any complex representing $E$ is perfect.
Comments (0)
There are also: