Lemma 20.47.2. Let (X, \mathcal{O}_ X) be a ringed space. Let E be an object of D(\mathcal{O}_ X).
If there exists an open covering X = \bigcup U_ i, strictly perfect complexes \mathcal{E}_ i^\bullet on U_ i, and maps \alpha _ i : \mathcal{E}_ i^\bullet \to E|_{U_ i} in D(\mathcal{O}_{U_ i}) with H^ j(\alpha _ i) an isomorphism for j > m and H^ m(\alpha _ i) surjective, then E is m-pseudo-coherent.
If E is m-pseudo-coherent, then any complex representing E is m-pseudo-coherent.
Comments (2)
Comment #2770 by Mahdi Majidi-Zolbanin on
Comment #2879 by Johan on