Definition 20.47.1. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{E}^\bullet$ be a complex of $\mathcal{O}_ X$-modules. Let $m \in \mathbf{Z}$.

1. We say $\mathcal{E}^\bullet$ is $m$-pseudo-coherent if there exists an open covering $X = \bigcup U_ i$ and for each $i$ a morphism of complexes $\alpha _ i : \mathcal{E}_ i^\bullet \to \mathcal{E}^\bullet |_{U_ i}$ where $\mathcal{E}_ i^\bullet$ is strictly perfect on $U_ i$ and $H^ j(\alpha _ i)$ is an isomorphism for $j > m$ and $H^ m(\alpha _ i)$ is surjective.

2. We say $\mathcal{E}^\bullet$ is pseudo-coherent if it is $m$-pseudo-coherent for all $m$.

3. We say an object $E$ of $D(\mathcal{O}_ X)$ is $m$-pseudo-coherent (resp. pseudo-coherent) if and only if it can be represented by a $m$-pseudo-coherent (resp. pseudo-coherent) complex of $\mathcal{O}_ X$-modules.

Comment #8684 by Xiaolong Liu on

In (1) we may replace '$\mathcal{E}_i$ is strictly perfect' into '$\mathcal{E}^\bullet_i$ is strictly perfect'.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).