The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

20.41 Pseudo-coherent modules

In this section we discuss pseudo-coherent complexes.

Definition 20.41.1. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{E}^\bullet $ be a complex of $\mathcal{O}_ X$-modules. Let $m \in \mathbf{Z}$.

  1. We say $\mathcal{E}^\bullet $ is $m$-pseudo-coherent if there exists an open covering $X = \bigcup U_ i$ and for each $i$ a morphism of complexes $\alpha _ i : \mathcal{E}_ i^\bullet \to \mathcal{E}^\bullet |_{U_ i}$ where $\mathcal{E}_ i$ is strictly perfect on $U_ i$ and $H^ j(\alpha _ i)$ is an isomorphism for $j > m$ and $H^ m(\alpha _ i)$ is surjective.

  2. We say $\mathcal{E}^\bullet $ is pseudo-coherent if it is $m$-pseudo-coherent for all $m$.

  3. We say an object $E$ of $D(\mathcal{O}_ X)$ is $m$-pseudo-coherent (resp. pseudo-coherent) if and only if it can be represented by a $m$-pseudo-coherent (resp. pseudo-coherent) complex of $\mathcal{O}_ X$-modules.

If $X$ is quasi-compact, then an $m$-pseudo-coherent object of $D(\mathcal{O}_ X)$ is in $D^-(\mathcal{O}_ X)$. But this need not be the case if $X$ is not quasi-compact.

Lemma 20.41.2. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $E$ be an object of $D(\mathcal{O}_ X)$.

  1. If there exists an open covering $X = \bigcup U_ i$, strictly perfect complexes $\mathcal{E}_ i^\bullet $ on $U_ i$, and maps $\alpha _ i : \mathcal{E}_ i^\bullet \to E|_{U_ i}$ in $D(\mathcal{O}_{U_ i})$ with $H^ j(\alpha _ i)$ an isomorphism for $j > m$ and $H^ m(\alpha _ i)$ surjective, then $E$ is $m$-pseudo-coherent.

  2. If $E$ is $m$-pseudo-coherent, then any complex representing $E$ is $m$-pseudo-coherent.

Proof. Let $\mathcal{F}^\bullet $ be any complex representing $E$ and let $X = \bigcup U_ i$ and $\alpha _ i : \mathcal{E}_ i^\bullet \to E|_{U_ i}$ be as in (1). We will show that $\mathcal{F}^\bullet $ is $m$-pseudo-coherent as a complex, which will prove (1) and (2) simultaneously. By Lemma 20.40.8 we can after refining the open covering $X = \bigcup U_ i$ represent the maps $\alpha _ i$ by maps of complexes $\alpha _ i : \mathcal{E}_ i^\bullet \to \mathcal{F}^\bullet |_{U_ i}$. By assumption $H^ j(\alpha _ i)$ are isomorphisms for $j > m$, and $H^ m(\alpha _ i)$ is surjective whence $\mathcal{F}^\bullet $ is $m$-pseudo-coherent. $\square$

Lemma 20.41.3. Let $f : (X, \mathcal{O}_ X) \to (Y, \mathcal{O}_ Y)$ be a morphism of ringed spaces. Let $E$ be an object of $D(\mathcal{O}_ Y)$. If $E$ is $m$-pseudo-coherent, then $Lf^*E$ is $m$-pseudo-coherent.

Proof. Represent $E$ by a complex $\mathcal{E}^\bullet $ of $\mathcal{O}_ Y$-modules and choose an open covering $Y = \bigcup V_ i$ and $\alpha _ i : \mathcal{E}_ i^\bullet \to \mathcal{E}^\bullet |_{V_ i}$ as in Definition 20.41.1. Set $U_ i = f^{-1}(V_ i)$. By Lemma 20.41.2 it suffices to show that $Lf^*\mathcal{E}^\bullet |_{U_ i}$ is $m$-pseudo-coherent. Choose a distinguished triangle

\[ \mathcal{E}_ i^\bullet \to \mathcal{E}^\bullet |_{V_ i} \to C \to \mathcal{E}_ i^\bullet [1] \]

The assumption on $\alpha _ i$ means exactly that the cohomology sheaves $H^ j(C)$ are zero for all $j \geq m$. Denote $f_ i : U_ i \to V_ i$ the restriction of $f$. Note that $Lf^*\mathcal{E}^\bullet |_{U_ i} = Lf_ i^*(\mathcal{E}|_{V_ i})$. Applying $Lf_ i^*$ we obtain the distinguished triangle

\[ Lf_ i^*\mathcal{E}_ i^\bullet \to Lf_ i^*\mathcal{E}|_{V_ i} \to Lf_ i^*C \to Lf_ i^*\mathcal{E}_ i^\bullet [1] \]

By the construction of $Lf_ i^*$ as a left derived functor we see that $H^ j(Lf_ i^*C) = 0$ for $j \geq m$ (by the dual of Derived Categories, Lemma 13.17.1). Hence $H^ j(Lf_ i^*\alpha _ i)$ is an isomorphism for $j > m$ and $H^ m(Lf^*\alpha _ i)$ is surjective. On the other hand, $Lf_ i^*\mathcal{E}_ i^\bullet = f_ i^*\mathcal{E}_ i^\bullet $. is strictly perfect by Lemma 20.40.4. Thus we conclude. $\square$

Lemma 20.41.4. Let $(X, \mathcal{O}_ X)$ be a ringed space and $m \in \mathbf{Z}$. Let $(K, L, M, f, g, h)$ be a distinguished triangle in $D(\mathcal{O}_ X)$.

  1. If $K$ is $(m + 1)$-pseudo-coherent and $L$ is $m$-pseudo-coherent then $M$ is $m$-pseudo-coherent.

  2. If $K$ and $M$ are $m$-pseudo-coherent, then $L$ is $m$-pseudo-coherent.

  3. If $L$ is $(m + 1)$-pseudo-coherent and $M$ is $m$-pseudo-coherent, then $K$ is $(m + 1)$-pseudo-coherent.

Proof. Proof of (1). Choose an open covering $X = \bigcup U_ i$ and maps $\alpha _ i : \mathcal{K}_ i^\bullet \to K|_{U_ i}$ in $D(\mathcal{O}_{U_ i})$ with $\mathcal{K}_ i^\bullet $ strictly perfect and $H^ j(\alpha _ i)$ isomorphisms for $j > m + 1$ and surjective for $j = m + 1$. We may replace $\mathcal{K}_ i^\bullet $ by $\sigma _{\geq m + 1}\mathcal{K}_ i^\bullet $ and hence we may assume that $\mathcal{K}_ i^ j = 0$ for $j < m + 1$. After refining the open covering we may choose maps $\beta _ i : \mathcal{L}_ i^\bullet \to L|_{U_ i}$ in $D(\mathcal{O}_{U_ i})$ with $\mathcal{L}_ i^\bullet $ strictly perfect such that $H^ j(\beta )$ is an isomorphism for $j > m$ and surjective for $j = m$. By Lemma 20.40.7 we can, after refining the covering, find maps of complexes $\gamma _ i : \mathcal{K}^\bullet \to \mathcal{L}^\bullet $ such that the diagrams

\[ \xymatrix{ K|_{U_ i} \ar[r] & L|_{U_ i} \\ \mathcal{K}_ i^\bullet \ar[u]^{\alpha _ i} \ar[r]^{\gamma _ i} & \mathcal{L}_ i^\bullet \ar[u]_{\beta _ i} } \]

are commutative in $D(\mathcal{O}_{U_ i})$ (this requires representing the maps $\alpha _ i$, $\beta _ i$ and $K|_{U_ i} \to L|_{U_ i}$ by actual maps of complexes; some details omitted). The cone $C(\gamma _ i)^\bullet $ is strictly perfect (Lemma 20.40.2). The commutativity of the diagram implies that there exists a morphism of distinguished triangles

\[ (\mathcal{K}_ i^\bullet , \mathcal{L}_ i^\bullet , C(\gamma _ i)^\bullet ) \longrightarrow (K|_{U_ i}, L|_{U_ i}, M|_{U_ i}). \]

It follows from the induced map on long exact cohomology sequences and Homology, Lemmas 12.5.19 and 12.5.20 that $C(\gamma _ i)^\bullet \to M|_{U_ i}$ induces an isomorphism on cohomology in degrees $> m$ and a surjection in degree $m$. Hence $M$ is $m$-pseudo-coherent by Lemma 20.41.2.

Assertions (2) and (3) follow from (1) by rotating the distinguished triangle. $\square$

Lemma 20.41.5. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $K, L$ be objects of $D(\mathcal{O}_ X)$.

  1. If $K$ is $n$-pseudo-coherent and $H^ i(K) = 0$ for $i > a$ and $L$ is $m$-pseudo-coherent and $H^ j(L) = 0$ for $j > b$, then $K \otimes _{\mathcal{O}_ X}^\mathbf {L} L$ is $t$-pseudo-coherent with $t = \max (m + a, n + b)$.

  2. If $K$ and $L$ are pseudo-coherent, then $K \otimes _{\mathcal{O}_ X}^\mathbf {L} L$ is pseudo-coherent.

Proof. Proof of (1). By replacing $X$ by the members of an open covering we may assume there exist strictly perfect complexes $\mathcal{K}^\bullet $ and $\mathcal{L}^\bullet $ and maps $\alpha : \mathcal{K}^\bullet \to K$ and $\beta : \mathcal{L}^\bullet \to L$ with $H^ i(\alpha )$ and isomorphism for $i > n$ and surjective for $i = n$ and with $H^ i(\beta )$ and isomorphism for $i > m$ and surjective for $i = m$. Then the map

\[ \alpha \otimes ^\mathbf {L} \beta : \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{L}^\bullet ) \to K \otimes _{\mathcal{O}_ X}^\mathbf {L} L \]

induces isomorphisms on cohomology sheaves in degree $i$ for $i > t$ and a surjection for $i = t$. This follows from the spectral sequence of tors (details omitted).

Proof of (2). We may first replace $X$ by the members of an open covering to reduce to the case that $K$ and $L$ are bounded above. Then the statement follows immediately from case (1). $\square$

Lemma 20.41.6. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $m \in \mathbf{Z}$. If $K \oplus L$ is $m$-pseudo-coherent (resp. pseudo-coherent) in $D(\mathcal{O}_ X)$ so are $K$ and $L$.

Proof. Assume that $K \oplus L$ is $m$-pseudo-coherent. After replacing $X$ by the members of an open covering we may assume $K \oplus L \in D^-(\mathcal{O}_ X)$, hence $L \in D^-(\mathcal{O}_ X)$. Note that there is a distinguished triangle

\[ (K \oplus L, K \oplus L, L \oplus L[1]) = (K, K, 0) \oplus (L, L, L \oplus L[1]) \]

see Derived Categories, Lemma 13.4.9. By Lemma 20.41.4 we see that $L \oplus L[1]$ is $m$-pseudo-coherent. Hence also $L[1] \oplus L[2]$ is $m$-pseudo-coherent. By induction $L[n] \oplus L[n + 1]$ is $m$-pseudo-coherent. Since $L$ is bounded above we see that $L[n]$ is $m$-pseudo-coherent for large $n$. Hence working backwards, using the distinguished triangles

\[ (L[n], L[n] \oplus L[n - 1], L[n - 1]) \]

we conclude that $L[n - 1], L[n - 2], \ldots , L$ are $m$-pseudo-coherent as desired. $\square$

Lemma 20.41.7. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $m \in \mathbf{Z}$. Let $\mathcal{F}^\bullet $ be a (locally) bounded above complex of $\mathcal{O}_ X$-modules such that $\mathcal{F}^ i$ is $(m - i)$-pseudo-coherent for all $i$. Then $\mathcal{F}^\bullet $ is $m$-pseudo-coherent.

Proof. Omitted. Hint: use Lemma 20.41.4 and truncations as in the proof of More on Algebra, Lemma 15.62.10. $\square$

Lemma 20.41.8. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $m \in \mathbf{Z}$. Let $E$ be an object of $D(\mathcal{O}_ X)$. If $E$ is (locally) bounded above and $H^ i(E)$ is $(m - i)$-pseudo-coherent for all $i$, then $E$ is $m$-pseudo-coherent.

Proof. Omitted. Hint: use Lemma 20.41.4 and truncations as in the proof of More on Algebra, Lemma 15.62.11. $\square$

Lemma 20.41.9. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $K$ be an object of $D(\mathcal{O}_ X)$. Let $m \in \mathbf{Z}$.

  1. If $K$ is $m$-pseudo-coherent and $H^ i(K) = 0$ for $i > m$, then $H^ m(K)$ is a finite type $\mathcal{O}_ X$-module.

  2. If $K$ is $m$-pseudo-coherent and $H^ i(K) = 0$ for $i > m + 1$, then $H^{m + 1}(K)$ is a finitely presented $\mathcal{O}_ X$-module.

Proof. Proof of (1). We may work locally on $X$. Hence we may assume there exists a strictly perfect complex $\mathcal{E}^\bullet $ and a map $\alpha : \mathcal{E}^\bullet \to K$ which induces an isomorphism on cohomology in degrees $> m$ and a surjection in degree $m$. It suffices to prove the result for $\mathcal{E}^\bullet $. Let $n$ be the largest integer such that $\mathcal{E}^ n \not= 0$. If $n = m$, then $H^ m(\mathcal{E}^\bullet )$ is a quotient of $\mathcal{E}^ n$ and the result is clear. If $n > m$, then $\mathcal{E}^{n - 1} \to \mathcal{E}^ n$ is surjective as $H^ n(E^\bullet ) = 0$. By Lemma 20.40.5 we can locally find a section of this surjection and write $\mathcal{E}^{n - 1} = \mathcal{E}' \oplus \mathcal{E}^ n$. Hence it suffices to prove the result for the complex $(\mathcal{E}')^\bullet $ which is the same as $\mathcal{E}^\bullet $ except has $\mathcal{E}'$ in degree $n - 1$ and $0$ in degree $n$. We win by induction on $n$.

Proof of (2). We may work locally on $X$. Hence we may assume there exists a strictly perfect complex $\mathcal{E}^\bullet $ and a map $\alpha : \mathcal{E}^\bullet \to K$ which induces an isomorphism on cohomology in degrees $> m$ and a surjection in degree $m$. As in the proof of (1) we can reduce to the case that $\mathcal{E}^ i = 0$ for $i > m + 1$. Then we see that $H^{m + 1}(K) \cong H^{m + 1}(\mathcal{E}^\bullet ) = \mathop{\mathrm{Coker}}(\mathcal{E}^ m \to \mathcal{E}^{m + 1})$ which is of finite presentation. $\square$

Lemma 20.41.10. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_ X$-modules.

  1. $\mathcal{F}$ viewed as an object of $D(\mathcal{O}_ X)$ is $0$-pseudo-coherent if and only if $\mathcal{F}$ is a finite type $\mathcal{O}_ X$-module, and

  2. $\mathcal{F}$ viewed as an object of $D(\mathcal{O}_ X)$ is $(-1)$-pseudo-coherent if and only if $\mathcal{F}$ is an $\mathcal{O}_ X$-module of finite presentation.

Proof. Use Lemma 20.41.9 to prove the implications in one direction and Lemma 20.41.8 for the other. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08CA. Beware of the difference between the letter 'O' and the digit '0'.