**Proof.**
Proof of (1). We may work locally on $X$. Hence we may assume there exists a strictly perfect complex $\mathcal{E}^\bullet $ and a map $\alpha : \mathcal{E}^\bullet \to K$ which induces an isomorphism on cohomology in degrees $> m$ and a surjection in degree $m$. It suffices to prove the result for $\mathcal{E}^\bullet $. Let $n$ be the largest integer such that $\mathcal{E}^ n \not= 0$. If $n = m$, then $H^ m(\mathcal{E}^\bullet )$ is a quotient of $\mathcal{E}^ n$ and the result is clear. If $n > m$, then $\mathcal{E}^{n - 1} \to \mathcal{E}^ n$ is surjective as $H^ n(E^\bullet ) = 0$. By Lemma 20.43.5 we can locally find a section of this surjection and write $\mathcal{E}^{n - 1} = \mathcal{E}' \oplus \mathcal{E}^ n$. Hence it suffices to prove the result for the complex $(\mathcal{E}')^\bullet $ which is the same as $\mathcal{E}^\bullet $ except has $\mathcal{E}'$ in degree $n - 1$ and $0$ in degree $n$. We win by induction on $n$.

Proof of (2). We may work locally on $X$. Hence we may assume there exists a strictly perfect complex $\mathcal{E}^\bullet $ and a map $\alpha : \mathcal{E}^\bullet \to K$ which induces an isomorphism on cohomology in degrees $> m$ and a surjection in degree $m$. As in the proof of (1) we can reduce to the case that $\mathcal{E}^ i = 0$ for $i > m + 1$. Then we see that $H^{m + 1}(K) \cong H^{m + 1}(\mathcal{E}^\bullet ) = \mathop{\mathrm{Coker}}(\mathcal{E}^ m \to \mathcal{E}^{m + 1})$ which is of finite presentation.
$\square$

## Comments (0)