Lemma 20.45.4. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $E$ be an object of $D(\mathcal{O}_ X)$. Let $a \leq b$ be integers. If $E$ has tor amplitude in $[a, b]$ and is $(a - 1)$-pseudo-coherent, then $E$ is perfect.

Proof. After replacing $X$ by the members of an open covering we may assume there exists a strictly perfect complex $\mathcal{E}^\bullet$ and a map $\alpha : \mathcal{E}^\bullet \to E$ such that $H^ i(\alpha )$ is an isomorphism for $i \geq a$. We may and do replace $\mathcal{E}^\bullet$ by $\sigma _{\geq a - 1}\mathcal{E}^\bullet$. Choose a distinguished triangle

$\mathcal{E}^\bullet \to E \to C \to \mathcal{E}^\bullet $

From the vanishing of cohomology sheaves of $E$ and $\mathcal{E}^\bullet$ and the assumption on $\alpha$ we obtain $C \cong \mathcal{K}[a - 2]$ with $\mathcal{K} = \mathop{\mathrm{Ker}}(\mathcal{E}^{a - 1} \to \mathcal{E}^ a)$. Let $\mathcal{F}$ be an $\mathcal{O}_ X$-module. Applying $- \otimes _{\mathcal{O}_ X}^\mathbf {L} \mathcal{F}$ the assumption that $E$ has tor amplitude in $[a, b]$ implies $\mathcal{K} \otimes _{\mathcal{O}_ X} \mathcal{F} \to \mathcal{E}^{a - 1} \otimes _{\mathcal{O}_ X} \mathcal{F}$ has image $\mathop{\mathrm{Ker}}(\mathcal{E}^{a - 1} \otimes _{\mathcal{O}_ X} \mathcal{F} \to \mathcal{E}^ a \otimes _{\mathcal{O}_ X} \mathcal{F})$. It follows that $\text{Tor}_1^{\mathcal{O}_ X}(\mathcal{E}', \mathcal{F}) = 0$ where $\mathcal{E}' = \mathop{\mathrm{Coker}}(\mathcal{E}^{a - 1} \to \mathcal{E}^ a)$. Hence $\mathcal{E}'$ is flat (Lemma 20.26.15). Thus $\mathcal{E}'$ is locally a direct summand of a finite free module by Modules, Lemma 17.17.3. Thus locally the complex

$\mathcal{E}' \to \mathcal{E}^{a - 1} \to \ldots \to \mathcal{E}^ b$

is quasi-isomorphic to $E$ and $E$ is perfect. $\square$

There are also:

• 2 comment(s) on Section 20.45: Perfect complexes

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).