Lemma 36.7.1. Let f : X \to Y be an affine morphism of schemes. Then f_* defines a derived functor f_* : D(\mathit{QCoh}(\mathcal{O}_ X)) \to D(\mathit{QCoh}(\mathcal{O}_ Y)). This functor has the property that
commutes.
Lemma 36.7.1. Let f : X \to Y be an affine morphism of schemes. Then f_* defines a derived functor f_* : D(\mathit{QCoh}(\mathcal{O}_ X)) \to D(\mathit{QCoh}(\mathcal{O}_ Y)). This functor has the property that
commutes.
Proof. The functor f_* : \mathit{QCoh}(\mathcal{O}_ X) \to \mathit{QCoh}(\mathcal{O}_ Y) is exact, see Cohomology of Schemes, Lemma 30.2.3. Hence f_* defines a derived functor f_* : D(\mathit{QCoh}(\mathcal{O}_ X)) \to D(\mathit{QCoh}(\mathcal{O}_ Y)) by simply applying f_* to any representative complex, see Derived Categories, Lemma 13.16.9. The diagram commutes by Lemma 36.5.1. \square
Comments (0)