Lemma 36.11.3. Let $S$ be a Noetherian scheme. Let $f : X \to S$ be a morphism of schemes which is locally of finite type. Let $E$ be an object of $D^ b_{\textit{Coh}}(\mathcal{O}_ X)$ such that the support of $H^ i(E)$ is proper over $S$ for all $i$. Then $Rf_*E$ is an object of $D^ b_{\textit{Coh}}(\mathcal{O}_ S)$.
Proof. Consider the spectral sequence
\[ R^ pf_*H^ q(E) \Rightarrow R^{p + q}f_*E \]
see Derived Categories, Lemma 13.21.3. By assumption and Cohomology of Schemes, Lemma 30.26.10 the sheaves $R^ pf_*H^ q(E)$ are coherent. Hence $R^{p + q}f_*E$ is coherent, i.e., $Rf_*E \in D_{\textit{Coh}}(\mathcal{O}_ S)$. Boundedness from below is trivial. Boundedness from above follows from Cohomology of Schemes, Lemma 30.4.5 or from Lemma 36.4.1. $\square$
Comments (2)
Comment #4826 by awllower on
Comment #5129 by Johan on