The Stacks project

Lemma 18.28.14. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{F}$ be an $\mathcal{O}$-module. The following are equivalent

  1. $\mathcal{F}$ is a flat $\mathcal{O}$-module.

  2. Let $U$ be an object of $\mathcal{C}$ and let

    \[ \mathcal{O}_ U \xrightarrow {(f_1, \ldots , f_ n)} \mathcal{O}_ U^{\oplus n} \xrightarrow {(s_1, \ldots , s_ n)} \mathcal{F}|_ U \]

    be a complex of $\mathcal{O}_ U$-modules. Then there exists a covering $\{ U_ i \to U\} $ and for each $i$ a factorization

    \[ \mathcal{O}_{U_ i}^{\oplus n} \xrightarrow {B_ i} \mathcal{O}_{U_ i}^{\oplus l_ i} \xrightarrow {(t_{i1}, \ldots , t_{il_ i})} \mathcal{F}|_{U_ i} \]

    of $(s_1, \ldots , s_ n)|_{U_ i}$ such that $B_ i \circ (f_1, \ldots , f_ n)|_{U_ i} = 0$.

  3. Let $U$ be an object of $\mathcal{C}$ and let

    \[ \mathcal{O}_ U^{\oplus m} \xrightarrow {A} \mathcal{O}_ U^{\oplus n} \xrightarrow {(s_1, \ldots , s_ n)} \mathcal{F}|_ U \]

    be a complex of $\mathcal{O}_ U$-modules. Then there exists a covering $\{ U_ i \to U\} $ and for each $i$ a factorization

    \[ \mathcal{O}_{U_ i}^{\oplus n} \xrightarrow {B_ i} \mathcal{O}_{U_ i}^{\oplus l_ i} \xrightarrow {(t_{i1}, \ldots , t_{il_ i})} \mathcal{F}|_{U_ i} \]

    of $(s_1, \ldots , s_ n)|_{U_ i}$ such that $B_ i \circ A|_{U_ i} = 0$.

Proof. Assume (1). Let $\mathcal{I} \subset \mathcal{O}_ U$ be the sheaf of ideals generated by $f_1, \ldots , f_ n$. Then $\sum f_ j \otimes s_ j$ is a section of $\mathcal{I} \otimes _{\mathcal{O}_ U} \mathcal{F}|_ U$ which maps to zero in $\mathcal{F}|_ U$. As $\mathcal{F}|_ U$ is flat (Lemma 18.28.6) the map $\mathcal{I} \otimes _{\mathcal{O}_ U} \mathcal{F}|_ U \to \mathcal{F}|_ U$ is injective. Since $\mathcal{I} \otimes _{\mathcal{O}_ U} \mathcal{F}|_ U$ is the sheaf associated to the presheaf tensor product, we see there exists a covering $\{ U_ i \to U\} $ such that $\sum f_ j|_{U_ i} \otimes s_ j|_{U_ i}$ is zero in $\mathcal{I}(U_ i) \otimes _{\mathcal{O}(U_ i)} \mathcal{F}(U_ i)$. Unwinding the definitions using Algebra, Lemma 10.107.10 we find $t_{i1}, \ldots , t_{i l_ i} \in \mathcal{F}(U_ i)$ and $a_{ijk} \in \mathcal{O}(U_ i)$ such that $\sum _ j a_{ijk}f_ j|_{U_ i} = 0$ and $s_ j|_{U_ i} = \sum _ k a_{ijk}t_{ik}$. Thus (2) holds.

Assume (2). Let $U$, $n$, $m$, $A$ and $s_1, \ldots , s_ n$ as in (3) be given. Observe that $A$ has $m$ columns. We will prove the assertion of (3) is true by induction on $m$. For the base case $m = 0$ we can use the factorization through the zero sheaf (in other words $l_ i = 0$). Let $(f_1, \ldots , f_ n)$ be the last column of $A$ and apply (2). This gives new diagrams

\[ \mathcal{O}_{U_ i}^{\oplus m} \xrightarrow {B_ i \circ A|_{U_ i}} \mathcal{O}_{U_ i}^{\oplus l_ i} \xrightarrow {(t_{i1}, \ldots , t_{il_ i})} \mathcal{F}|_{U_ i} \]

but the first column of $A_ i = B_ i \circ A|_{U_ i}$ is zero. Hence we can apply the induction hypothesis to $U_ i$, $l_ i$, $m - 1$, the matrix consisting of the first $m - 1$ columns of $A_ i$, and $t_{i1}, \ldots , t_{il_ i}$ to get coverings $\{ U_{ij} \to U_ j\} $ and factorizations

\[ \mathcal{O}_{U_{ij}}^{\oplus l_ i} \xrightarrow {C_{ij}} \mathcal{O}_{U_{ij}}^{\oplus k_{ij}} \xrightarrow {(v_{ij1}, \ldots , v_{ij k_{ij}})} \mathcal{F}|_{U_{ij}} \]

of $(t_{i1}, \ldots , t_{il_ i})|_{U_{ij}}$ such that $C_ i \circ B_ i|_{U_{ij}} \circ A|_{U_{ij}} = 0$. Then $\{ U_{ij} \to U\} $ is a covering and we get the desired factorizations using $B_{ij} = C_ i \circ B_ i|_{U_{ij}}$ and $v_{ija}$. In this way we see that (2) implies (3).

Assume (3). Let $\mathcal{G} \to \mathcal{H}$ be an injective homomorphism of $\mathcal{O}$-modules. We have to show that $\mathcal{G} \otimes _\mathcal {O} \mathcal{F} \to \mathcal{H} \otimes _\mathcal {O} \mathcal{F}$ is injective. Let $U$ be an object of $\mathcal{C}$ and let $s \in (\mathcal{G} \otimes _\mathcal {O} \mathcal{F})(U)$ be a section which maps to zero in $\mathcal{H} \otimes _\mathcal {O} \mathcal{F}$. We have to show that $s$ is zero. Since $\mathcal{G} \otimes _\mathcal {O} \mathcal{F}$ is a sheaf, it suffices to find a covering $\{ U_ i \to U\} _{i \in I}$ of $\mathcal{C}$ such that $s|_{U_ i}$ is zero for all $i \in I$. Hence we may always replace $U$ by the members of a covering. In particular, since $\mathcal{G} \otimes _\mathcal {O} \mathcal{F}$ is the sheafification of $\mathcal{G} \otimes _{p, \mathcal{O}} \mathcal{F}$ we may assume that $s$ is the image of $s' \in \mathcal{G}(U) \otimes _{\mathcal{O}(U)} \mathcal{F}(U)$. Arguing similarly for $\mathcal{H} \otimes _\mathcal {O} \mathcal{F}$ we may assume that $s'$ maps to zero in $\mathcal{H}(U) \otimes _{\mathcal{O}(U)} \mathcal{F}(U)$. Write $\mathcal{F}(U) = \mathop{\mathrm{colim}}\nolimits M_\alpha $ as a filtered colimit of finitely presented $\mathcal{O}(U)$-modules $M_\alpha $ (Algebra, Lemma 10.11.3). Since tensor product commutes with filtered colimits (Algebra, Lemma 10.12.9) we can choose an $\alpha $ such that $s'$ comes from some $s'' \in \mathcal{G}(U) \otimes _{\mathcal{O}(U)} M_\alpha $ and such that $s''$ maps to zero in $\mathcal{H}(U) \otimes _{\mathcal{O}(U)} M_\alpha $. Fix $\alpha $ and $s''$. Choose a presentation

\[ \mathcal{O}(U)^{\oplus m} \xrightarrow {A} \mathcal{O}(U)^{\oplus n} \to M_\alpha \to 0 \]

We apply (3) to the corresponding complex of $\mathcal{O}_ U$-modules

\[ \mathcal{O}_ U^{\oplus m} \xrightarrow {A} \mathcal{O}_ U^{\oplus n} \xrightarrow {(s_1, \ldots , s_ n)} \mathcal{F}|_ U \]

After replacing $U$ by the members of the covering $U_ i$ we find that the map

\[ M_\alpha \to \mathcal{F}(U) \]

factors through a free module $\mathcal{O}(U)^{\oplus l}$ for some $l$. Since $\mathcal{G}(U) \to \mathcal{H}(U)$ is injective we conclude that

\[ \mathcal{G}(U) \otimes _{\mathcal{O}(U)} \mathcal{O}(U)^{\oplus l} \to \mathcal{H}(U) \otimes _{\mathcal{O}(U)} \mathcal{O}(U)^{\oplus l} \]

is injective too. Hence as $s''$ maps to zero in the module on the right, it also maps to zero in the module on the left, i.e., $s$ is zero as desired. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08FC. Beware of the difference between the letter 'O' and the digit '0'.