Definition 21.44.1. Let (\mathcal{C}, \mathcal{O}) be a ringed site. Let \mathcal{E}^\bullet be a complex of \mathcal{O}-modules. We say \mathcal{E}^\bullet is strictly perfect if \mathcal{E}^ i is zero for all but finitely many i and \mathcal{E}^ i is a direct summand of a finite free \mathcal{O}-module for all i.
Comments (0)