Lemma 21.44.5. Let (\mathcal{C}, \mathcal{O}) be a ringed site. Let U be an object of \mathcal{C}. Given a solid diagram of \mathcal{O}_ U-modules
\xymatrix{ \mathcal{E} \ar@{..>}[dr] \ar[r] & \mathcal{F} \\ & \mathcal{G} \ar[u]_ p }
with \mathcal{E} a direct summand of a finite free \mathcal{O}_ U-module and p surjective, then there exists a covering \{ U_ i \to U\} such that a dotted arrow making the diagram commute exists over each U_ i.
Proof.
We may assume \mathcal{E} = \mathcal{O}_ U^{\oplus n} for some n. In this case finding the dotted arrow is equivalent to lifting the images of the basis elements in \Gamma (U, \mathcal{F}). This is locally possible by the characterization of surjective maps of sheaves (Sites, Section 7.11).
\square
Comments (0)