Lemma 21.44.8. Let (\mathcal{C}, \mathcal{O}) be a ringed site. Let U be an object of \mathcal{C}. Let \mathcal{E}^\bullet , \mathcal{F}^\bullet be complexes of \mathcal{O}_ U-modules with \mathcal{E}^\bullet strictly perfect.
For any element \alpha \in \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ U)}(\mathcal{E}^\bullet , \mathcal{F}^\bullet ) there exists a covering \{ U_ i \to U\} such that \alpha |_{U_ i} is given by a morphism of complexes \alpha _ i : \mathcal{E}^\bullet |_{U_ i} \to \mathcal{F}^\bullet |_{U_ i}.
Given a morphism of complexes \alpha : \mathcal{E}^\bullet \to \mathcal{F}^\bullet whose image in the group \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ U)}(\mathcal{E}^\bullet , \mathcal{F}^\bullet ) is zero, there exists a covering \{ U_ i \to U\} such that \alpha |_{U_ i} is homotopic to zero.
Comments (0)