Definition 21.45.1. Let (\mathcal{C}, \mathcal{O}) be a ringed site. Let \mathcal{E}^\bullet be a complex of \mathcal{O}-modules. Let m \in \mathbf{Z}.
We say \mathcal{E}^\bullet is m-pseudo-coherent if for every object U of \mathcal{C} there exists a covering \{ U_ i \to U\} and for each i a morphism of complexes \alpha _ i : \mathcal{E}_ i^\bullet \to \mathcal{E}^\bullet |_{U_ i} where \mathcal{E}_ i^\bullet is a strictly perfect complex of \mathcal{O}_{U_ i}-modules and H^ j(\alpha _ i) is an isomorphism for j > m and H^ m(\alpha _ i) is surjective.
We say \mathcal{E}^\bullet is pseudo-coherent if it is m-pseudo-coherent for all m.
We say an object E of D(\mathcal{O}) is m-pseudo-coherent (resp. pseudo-coherent) if and only if it can be represented by a m-pseudo-coherent (resp. pseudo-coherent) complex of \mathcal{O}-modules.
Comments (0)