Lemma 21.47.2. Let (\mathcal{C}, \mathcal{O}) be a ringed site. Let E be an object of D(\mathcal{O}).
If \mathcal{C} has a final object X and there exist a covering \{ U_ i \to X\} , strictly perfect complexes \mathcal{E}_ i^\bullet of \mathcal{O}_{U_ i}-modules, and isomorphisms \alpha _ i : \mathcal{E}_ i^\bullet \to E|_{U_ i} in D(\mathcal{O}_{U_ i}), then E is perfect.
If E is perfect, then any complex representing E is perfect.
Comments (0)