Lemma 10.154.6. Let $R \to S$ be a ring map with $S$ henselian local. Given
an $R$-algebra $A$ which is a filtered colimit of étale $R$-algebras,
a prime $\mathfrak q$ of $A$ lying over $\mathfrak p = R \cap \mathfrak m_ S$,
a $\kappa (\mathfrak p)$-algebra map $\tau : \kappa (\mathfrak q) \to S/\mathfrak m_ S$,
then there exists a unique homomorphism of $R$-algebras $f : A \to S$ such that $\mathfrak q = f^{-1}(\mathfrak m_ S)$ and $f \bmod \mathfrak q = \tau $.
Comments (0)