Remark 21.34.11. Let $h : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}')$ be a morphism of ringed topoi. Let $K, L$ be objects of $D(\mathcal{O}')$. We claim there is a canonical map

in $D(\mathcal{O})$. Namely, by (21.34.0.1) proved in Lemma 21.34.2 such a map is the same thing as a map

The source of this arrow is $Lh^*(\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L) \otimes ^\mathbf {L} K)$ by Lemma 21.19.4 hence it suffices to construct a canonical map

For this we take the arrow corresponding to

via (21.34.0.1).

## Comments (0)