Proposition 98.4.3. In Situation 98.3.1 assume that

1. $f$ is of finite presentation, and

2. $\mathcal{F}$ and $\mathcal{G}$ are finitely presented $\mathcal{O}_ X$-modules, flat over $B$, with support proper over $B$.

Then the functor $\mathit{Isom}(\mathcal{F}, \mathcal{G})$ is an algebraic space affine of finite presentation over $B$.

Proof. We will use the abbreviations $H = \mathit{Hom}(\mathcal{F}, \mathcal{G})$, $I = \mathit{Hom}(\mathcal{F}, \mathcal{F})$, $H' = \mathit{Hom}(\mathcal{G}, \mathcal{F})$, and $I' = \mathit{Hom}(\mathcal{G}, \mathcal{G})$. By Proposition 98.3.10 the functors $H$, $I$, $H'$, $I'$ are algebraic spaces and the morphisms $H \to B$, $I \to B$, $H' \to B$, and $I' \to B$ are affine and of finite presentation. The composition of maps gives a morphism

$c : H' \times _ B H \longrightarrow I \times _ B I',\quad (u', u) \longmapsto (u \circ u', u' \circ u)$

of algebraic spaces over $B$. Since $I \times _ B I' \to B$ is separated, the section $\sigma : B \to I \times _ B I'$ corresponding to $(\text{id}_\mathcal {F}, \text{id}_\mathcal {G})$ is a closed immersion (Morphisms of Spaces, Lemma 66.4.7). Moreover, $\sigma$ is of finite presentation (Morphisms of Spaces, Lemma 66.28.9). Hence

$\mathit{Isom}(\mathcal{F}, \mathcal{G}) = (H' \times _ B H) \times _{c, I \times _ B I', \sigma } B$

is an algebraic space affine of finite presentation over $B$ as well. Some details omitted. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).