Situation 99.3.1. Let S be a scheme. Let f : X \to B be a morphism of algebraic spaces over S. Let \mathcal{F}, \mathcal{G} be quasi-coherent \mathcal{O}_ X-modules. For any scheme T over B we will denote \mathcal{F}_ T and \mathcal{G}_ T the base changes of \mathcal{F} and \mathcal{G} to T, in other words, the pullbacks via the projection morphism X_ T = X \times _ B T \to X. We consider the functor
99.3.1.1
\begin{equation} \label{quot-equation-hom} \mathit{Hom}(\mathcal{F}, \mathcal{G}) : (\mathit{Sch}/B)^{opp} \longrightarrow \textit{Sets},\quad T \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_{X_ T}}(\mathcal{F}_ T, \mathcal{G}_ T) \end{equation}
Comments (0)
There are also: