The Stacks project

Situation 15.7.1. Let $A, A', B, B', I$ be as in Situation 15.6.1. Let $B' \to D'$ be a ring map. Set $D = D' \otimes _{B'} B$, $C' = D' \otimes _{B'} A'$, and $C = D' \otimes _{B'} A$. This leads to a big commutative diagram

\[ \xymatrix{ C & & & C' \ar[lll] \\ & A \ar[ul] & A' \ar[l] \ar[ru] \\ & B \ar[u] \ar[ld] & B' \ar[l] \ar[u] \ar[rd] \\ D \ar[uuu] & & & D' \ar[lll] \ar[uuu] } \]

of rings. Observe that we do not assume that the map $D' \to D \times _ C C'$ is an isomorphism1. In this situation we have the functor
\begin{equation} \label{more-algebra-equation-relative-functor} \text{Mod}_{D'} \longrightarrow \text{Mod}_ D \times _{\text{Mod}_ C} \text{Mod}_{C'},\quad L' \longmapsto (L' \otimes _{D'} D, L' \otimes _{D'} C', can) \end{equation}

analogous to ( Note that $L' \otimes _{D'} D = L \otimes _{D'} (D' \otimes _{B'} B) = L \otimes _{B'} B$ and similarly $L' \otimes _{D'} C' = L \otimes _{D'} (D' \otimes _{B'} A') = L \otimes _{B'} A'$ hence the diagram

\[ \xymatrix{ \text{Mod}_{D'} \ar[r] \ar[d] & \text{Mod}_ D \times _{\text{Mod}_ C} \text{Mod}_{C'} \ar[d] \\ \text{Mod}_{B'} \ar[r] & \text{Mod}_ B \times _{\text{Mod}_ A} \text{Mod}_{A'} } \]

is commutative. In the following we will write $(N, M', \varphi )$ for an object of $\text{Mod}_ D \times _{\text{Mod}_ C} \text{Mod}_{C'}$, i.e., $N$ is a $D$-module, $M'$ is an $C'$-module and $\varphi : N \otimes _ B A \to M' \otimes _{A'} A$ is an isomorphism of $C$-modules. However, it is often more convenient think of $\varphi $ as a $D$-linear map $\varphi : N \to M'/IM'$ which induces an isomorphism $N \otimes _ B A \to M' \otimes _{A'} A = M'/IM'$.

[1] But $D' \to D \times _ C C'$ is surjective by Lemma 15.6.5.

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08KK. Beware of the difference between the letter 'O' and the digit '0'.