Lemma 15.7.2. In Situation 15.7.1 the functor (15.7.1.1) has a right adjoint, namely the functor

where $M = M'/IM'$. Moreover, the composition of $F$ with (15.7.1.1) is the identity functor on $\text{Mod}_ D \times _{\text{Mod}_ C} \text{Mod}_{C'}$. In other words, setting $N' = N \times _{\varphi , M} M'$ we have $N' \otimes _{D'} D = N$ and $N' \otimes _{D'} C' = M'$.

## Comments (0)