The Stacks project

Lemma 15.5.4. Given a commutative diagram of rings

\[ \xymatrix{ R & R' \ar[l] \\ B \ar[u] & B' \ar[u] \ar[l] } \]

the functor (15.5.3.1) has a right adjoint, namely the functor

\[ F : (N, M', \varphi ) \longmapsto N \times _\varphi M' \]

(see proof for elucidation).

Proof. Given an object $(N, M', \varphi )$ of the category $\text{Mod}_ B \times _{\text{Mod}_ R} \text{Mod}_{R'}$ we set

\[ N \times _\varphi M' = \{ (n, m') \in N \times M' \mid \varphi (n \otimes 1) = m' \otimes 1\text{ in }M' \otimes _{R'} R\} \]

viewed as a $B'$-module. The adjointness statement is that for a $B'$-module $L'$ and a triple $(N, M', \varphi )$ we have

\[ \mathop{\mathrm{Hom}}\nolimits _{B'}(L', N \times _\varphi M') = \mathop{\mathrm{Hom}}\nolimits _ B(L' \otimes _{B'} B, N) \times _{\mathop{\mathrm{Hom}}\nolimits _ R(L' \otimes _{B'} R, M' \otimes _{R'} R)} \mathop{\mathrm{Hom}}\nolimits _{R'}(L' \otimes _{B'} R', M') \]

By Algebra, Lemma 10.13.3 the right hand side is equal to

\[ \mathop{\mathrm{Hom}}\nolimits _{B'}(L', N) \times _{\mathop{\mathrm{Hom}}\nolimits _{B'}(L', M' \otimes _{R'} R)} \mathop{\mathrm{Hom}}\nolimits _{B'}(L', M') \]

Thus it is clear that for a pair $(g, f')$ of elements of this fibre product we get an $B'$-linear map $L' \to N \times _\varphi M'$, $l' \mapsto (g(l'), f'(l'))$. Conversely, given a $B'$ linear map $g' : L' \to N \times _\varphi M'$ we can set $g$ equal to the composition $L' \to N \times _\varphi M' \to N$ and $f'$ equal to the composition $L' \to N \times _\varphi M' \to M'$. These constructions are mutually inverse to each other and define the desired isomorphism. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0D2F. Beware of the difference between the letter 'O' and the digit '0'.