Situation 91.3.1. A morphism of thickenings $(f, f')$ is given by a commutative diagram
of ringed spaces whose horizontal arrows are thickenings. In this situation we set $\mathcal{I} = \mathop{\mathrm{Ker}}(i^\sharp ) \subset \mathcal{O}_{X'}$ and $\mathcal{J} = \mathop{\mathrm{Ker}}(t^\sharp ) \subset \mathcal{O}_{S'}$. As $f = f'$ on underlying topological spaces we will identify the (topological) pullback functors $f^{-1}$ and $(f')^{-1}$. Observe that $(f')^\sharp : f^{-1}\mathcal{O}_{S'} \to \mathcal{O}_{X'}$ induces in particular a map $f^{-1}\mathcal{J} \to \mathcal{I}$ and therefore a map of $\mathcal{O}_{X'}$-modules
If $i$ and $t$ are first order thickenings, then $(f')^*\mathcal{J} = f^*\mathcal{J}$ and the map above becomes a map $f^*\mathcal{J} \to \mathcal{I}$.
Comments (0)