The Stacks project

Lemma 91.10.1. Let $i : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}')$ be a first order thickening of ringed topoi. Assume given extensions

\[ 0 \to \mathcal{K} \to \mathcal{F}' \to \mathcal{F} \to 0 \quad \text{and}\quad 0 \to \mathcal{L} \to \mathcal{G}' \to \mathcal{G} \to 0 \]

as in (91.10.0.1) and maps $\varphi : \mathcal{F} \to \mathcal{G}$ and $\psi : \mathcal{K} \to \mathcal{L}$.

  1. If there exists an $\mathcal{O}'$-module map $\varphi ' : \mathcal{F}' \to \mathcal{G}'$ compatible with $\varphi $ and $\psi $, then the diagram

    \[ \xymatrix{ \mathcal{I} \otimes _\mathcal {O} \mathcal{F} \ar[r]_-{c_{\mathcal{F}'}} \ar[d]_{1 \otimes \varphi } & \mathcal{K} \ar[d]^\psi \\ \mathcal{I} \otimes _\mathcal {O} \mathcal{G} \ar[r]^-{c_{\mathcal{G}'}} & \mathcal{L} } \]

    is commutative.

  2. The set of $\mathcal{O}'$-module maps $\varphi ' : \mathcal{F}' \to \mathcal{G}'$ compatible with $\varphi $ and $\psi $ is, if nonempty, a principal homogeneous space under $\mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{L})$.

Proof. Part (1) is immediate from the description of the maps. For (2), if $\varphi '$ and $\varphi ''$ are two maps $\mathcal{F}' \to \mathcal{G}'$ compatible with $\varphi $ and $\psi $, then $\varphi ' - \varphi ''$ factors as

\[ \mathcal{F}' \to \mathcal{F} \to \mathcal{L} \to \mathcal{G}' \]

The map in the middle comes from a unique element of $\mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{L})$ by Modules on Sites, Lemma 18.25.1. Conversely, given an element $\alpha $ of this group we can add the composition (as displayed above with $\alpha $ in the middle) to $\varphi '$. Some details omitted. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08MC. Beware of the difference between the letter 'O' and the digit '0'.