Lemma 12.5.13. Let $\mathcal{A}$ be an abelian category. Let

$\xymatrix{ w\ar[r]^ f\ar[d]_ g & y\ar[d]^ h\\ x\ar[r]^ k & z }$

be a commutative diagram.

1. If the diagram is cartesian and $k$ is an epimorphism, then the diagram is cocartesian and $f$ is an epimorphism.

2. If the diagram is cocartesian and $g$ is a monomorphism, then the diagram is cartesian and $h$ is a monomorphism.

Proof. Suppose the diagram is cartesian and $k$ is an epimorphism. Let $u = (g, f) : w \to x \oplus y$ and let $v = (k, -h) : x \oplus y \to z$. As $k$ is an epimorphism, $v$ is an epimorphism, too. Therefore and by Lemma 12.5.11, the sequence $0\to w\overset {u}\to x\oplus y\overset {v}\to z\to 0$ is exact. Thus, the diagram is cocartesian by Lemma 12.5.11. Finally, $f$ is an epimorphism by Lemma 12.5.12 and Lemma 12.5.4. This proves (1), and (2) follows by duality. $\square$

## Comments (2)

Comment #719 by Anfang Zhou on

Topy. I think we should either change $u=(g,-f)$ to be $u=(g,f)$ or change $v=(k,-h)$ to be $v=(k,h)$.

There are also:

• 4 comment(s) on Section 12.5: Abelian categories

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08N4. Beware of the difference between the letter 'O' and the digit '0'.